

3dRudder​ SDK

04​/​08​/201​7 Version 1.0 for Windows

3dRudder SDK 1.0

Warning: this
version of the SDK
works with firmware
version 1.3.x.x and
higher !

If you have 3dRudder version with the firmware 1.2.x.x or older, please
contact us to get the updating software: support@3drudder.com

Page 2/19

3dRudder SDK 1.0

1 SDK Organization 4

2 Type of library available 4

3 Static library usage 5

4 SDK Usage 5
4.1 Include the SDK definition 5
4.2 Standard lib usage 5
4.3 3dRudder NameSpace 5
4.4 Get the SDK Class pointer 5
4.5 Free the SDK 5

5 SDK Reference 6
5.1 Basic functions description 6

5.1.1 Initialize the SDK 6
5.1.2 Get the sdk version 6
5.1.3 Get the number of connected 3dRudder devices 6
5.1.4 Check if a 3dRudder is connected to the port # 6
5.1.5 Get the Firmware version of a 3dRudder 6
5.1.6 Play a simple sound on a 3dRudder 7
5.1.7 Play a sequence of sound on a 3dRudder 7

5.1.7.1 Using a memory array to define the Tones 7
5.1.7.2 Using a string to define the Tones 7

5.1.8 Freeze/Unfreeze the device 8
5.1.9 Hide the device 8
5.1.10 Test if the device is hidden 8

5.2 3 Axis definitions 9
5.3 Curves 10
5.4 Custom Curve 13
5.5 Read the current status of the 3dRudder 13
5.6 Read the User Offset Value 14
5.7 Read Force Sensor Values 14
5.8 Events 17
5.9 Error Code 18
5.10 Get the text of the error 18

Page 3/19

3dRudder SDK 1.0

3dRudder SDK

Version 1.0 for Windows ​(Windows 7 and later …)

1 SDK Organization

2 Type of library available

● With this release of the SDK, we provide the static and dynamic libraries in 32 and 64 bits.

● We only provide the multi-threaded version.

● The “Static Dll” ​is​ a static library with the DLL CRT compilation (/MD).

● Visual Studio 2013 and Visual Studio 2015 ha​ve​ been used to compile these libraries.

Page 4/19

3dRudder SDK 1.0

3 Static library usage
To use the static libraries you need to define ​_3DRUDDER_SDK_STATIC​ to avoid ​dllimport

4 SDK Usage

4.1 Include the SDK definition
#include​ ​"3dRudderSDK.h"

4.2 Standard lib usage
The SDK uses stdint.h for the types definition.

4.3 3dRudder NameSpace
The SDK uses the namespace ​ns3dRudder

4.4 Get the SDK Class pointer
ns3dRudder::CSdk​* ​pSdk​=​ns3dRudder::​GetSDK​();

4.5 Free the SDK
void ns3dRudder::​EndSDK​();
will free the sdk from memory.

Page 5/19

3dRudder SDK 1.0

5 SDK Reference
All the SDK is defined in the class ​ns3dRudder::CSdk​. With this SDK it’s possible to manage up to four
3dRudder ​_3DRUDDER_SDK_MAX_DEVICE ​defines the max ports number (from 0 to 3).

5.1 Basic functions description

5.1.1 Initialize the SDK
void​ Init() ​ ​const

Initializes the​ ​SDK.

5.1.2 Get the sdk version
uint16_t​ ​GetSDKVersion​() const
Return the SDK version of the library, it’s possible to compare this version with the
_3DRUDDER_SDK_VERSION​ ​define included in the 3dRudderSDK.h to compare if the library and the .h
match. The version is a fixed point unsigned short in hexadecimal: 0x0100 means version 1.0.

5.1.3 Get the number of connected 3dRudder devices
int32_t ​GetNumberOfConnectedDevice()​ ​const

Return the number of 3dRudder currently connected to the computer.

5.1.4 Check if a 3dRudder is connected to the port #
bool​ ​IsDeviceConnected​(​uint32_t​ ​nPortNumber​) const
Return true if a 3dRudder is connected to the​ ​nPortNumber​ ​port​.

5.1.5 Get the Firmware version of a 3dRudder
uint16_t ​GetVersion(uint32_t nPortNumber)​ const

Return version number of the firmware of the 3dRudder connected to the​ ​nPortNumber​ ​port​. ​The
version is a fixed point unsigned short in hexadecimal: 0x1318 means version 1.3.1.8
Return 0xFFFF in case of error.

Page 6/19

3dRudder SDK 1.0

5.1.6 Play a simple sound on a 3dRudder
ErrorCode​ ​PlaySnd​(​uint32_t​ ​nPortNumber​,​uint16_t​ ​nFrequency​,​uint16_t​ ​nDuration​) const
It’s possible to play a sound on a 3dRudder connected to the​ ​nPortNumber​ ​port.
nFrequency​ ​defines the frequency of the sound in Hz (440 is a A).

nDuration​ ​defines the duration of the sound in ms.
ErrorCode​ ​is the possible error code returned by this method.

5.1.7 Play a sequence of sound on a 3dRudder
it’s possible to play a sequence of 12 tones on a 3dRudder with a firmware version superior or equal
to 1.3.6.2

5.1.7.1 Using a memory array to define the Tones
ErrorCode​ ​PlaySndEx​(​uint32_t​ ​nPortNumber​,​uint8_t​ ​nSize​,​Tone​ ​*pTones,​bool​ ​bWait=​true​ ​) const
Play a sequence of sound on a 3dRudder connected to the​ ​nPortNumber​ ​port defined by ​pTones
array ​with the size ​nSize. bWait=true ​makes the method wait until the end of the played Tones.
ErrorCode​ ​is the possible error code returned by this method.

The ​Tone ​class is this one :

class ​Tone
{
public:

uint16_t ​m_nFrequency​;
uint8_t ​m_nDurationOfTone​;
uint8_t ​m_nPauseAfterTone​;

};

with :
● m_nFrequency ​is the Frequency of the sound to be played.
● m_nDurationOfTone ​is the duration of the played tone
● m_nPauseAfterTone ​is the silence before playing the next tones

5.1.7.2 Using a string to define the Tones
ErrorCode​ ​PlaySndEx​(​uint32_t​ ​nPortNumber​,​char​ *s​Tones,​bool​ ​bWait=​true​ ​) const
Play a sequence of sound on a 3dRudder connected to the​ ​nPortNumber​ ​port defined by the string
sTones. bWait=true ​make the method wait until the end of the played Tones.
ErrorCode​ ​is the possible error code returned by this method.

The String need to be written like this :
Note​ ​OctaveNumber ​(​Duration of Tone​, ​Pause After Tone​)

So to play C of the octave 5 with a Duration of 200 and a Pause of 250 you can write like this :
“C5(200,250)”. The sequence can be write in the same string like this :
“C5(200,250)D#5(500,200)E5(300,100)”

Page 7/19

3dRudder SDK 1.0

5.1.8 Freeze/Unfreeze the device
ErrorCode​ ​SetFreeze​(​uint32_t​ ​nPortNumber​, ​bool​ ​bEnable​)​const

It may be useful to temporarily deactivate and reactivate the 3dRudder connected to ​nPortNumber
without necessarily removing and replacing the feet. This makes it possible, for example, to freeze
the displacement in the phases when they are not required in the 3D universe, without risk of drifting,
and to avoiding freezing the user in his initial neutral position, and thus to relocate the device or
move the legs for relax.
In Freeze mode, the values ​​returned by the 3dRudder are identical to those returned when the
device waits for the 2nd foot: the outputs are set to 0.
During an "unfreeze":

● The device switches directly to the "InUse" mode, without going through the required
immobility step required in standard mode. This makes it possible to freeze the
displacements and to restore them without latency, for a more fluid operation.

● The user offsets are recalculated when unfreezing: thus, during the freeze, the user can
change his rest position.

As a summary, the freeze / unfreeze function allows you to reposition yourself without creating
unintentional movements in the game.
bEnable​ ​must be set to 0 to unfreeze, and to 1 to freeze.
ErrorCode​ ​is the possible error code returned by this method.

5.1.9 Hide the device
ErrorCode​ ​HideSystemDevice​(​uint32_t​ ​nPortNumber​,​bool​ ​bHide​) const
By default the 3dRudder is seen by the system as a Directinput device, a mouse or a keyboard (this
can be changed thanks to the dashboard).
The function HideSystemDevice allows to hide the 3dRudder from the system, so your game will not
see it as a DirectInput device. ​Please think to put it back in standard mode when you exit your game
!
ErrorCode​ ​is the possible error code returned by this method.

5.1.10 Test if the device is hidden
bool ​IsSystemDeviceHidden​(​uint32_t​ ​nPortNumber​) const
Check if the device connected to ​nPortNumber ​is hidden

Page 8/19

3dRudder SDK 1.0

5.2 3 Axis definitions

The physical actions on the 3dRudder are converted from angle to move or rotation on 3D
environment.

The physical actions are :

Roll Pitch Up Down Yaw

Below is the 3D axis définition used by the 3dRudder to move or rotate in the 3D world :

The movements are converted to action in the 3D World.

Usually, the angles are converted to speed in the 3D World, through tunable response curves, so
that the movements can be smooth or reactive. Below is explained how to configure the response
curves.

Page 9/19

3dRudder SDK 1.0

5.3 Curves

Note : before release 0.6 of the SDK, this functionality wasn’t enabled​.

You can tune the response curve through the SDK, so that it helps you for integrating the 3dRudder
in your gamepla. Each curve is defined by 4 parameters, but you will generally use mainly 2 as the
others are the limits in and out.
The parameters are :

● Dead Zone: ​zone where the input has no impact on the output.
● Exp: ​exponent of the curve, Exponent 1 is linear, Exponent 2 is a square curve, etc.
● xSat: ​input limit, it’s generally linked to the physical limit of the 3dRudder (for the Roll/X Axis

and the Pitch/Y Axis) or of the human body (for the Yaw/Z Rotation).
● yMax:​ output limit, as we work in normalized values, this value is generally fixed to 1.0

There is one curve for each axis, defined in ​CurveType​ :

CurveXAxis​ or ​CurveRoll

X Axis curve

CurveYAxis ​or ​CurvePitch

Y Axis curve

CurveZAxis ​or ​CurveUpDown

Z Axis Curve

CurveZRotation ​or ​CurveYaw

Z Rotation Curve

Page 10/19

3dRudder SDK 1.0

Linear Curve :

Example Yaw

Axe DeadZone XSat YMax Exp.

Yaw 0.0 1.0 1.0 1.0

Pitch 0.0 1.0 1.0 1.0

roll 0.0 1.0 1.0 1.0

UpDown 0.0 1.0 1.0 1.0

Page 11/19

3dRudder SDK 1.0

Factory Curve:

Example Yaw

Axe DeadZone XSat YMax Exp.

Yaw 3.0/25.0 20.0/25.0 1.0 2.0

Pitch 2.0/18.0 14.0/18.0 1.0 2.0

roll 2.0/18.0 12.0/18.0 1.0 2.0

UpDown 0.08 0.6 1.0 4.0

Page 12/19

3dRudder SDK 1.0

5.4 Custom Curve
It’s possible to define your own custom curve by doing a derivation of the method :
virtual float ​CalcCurveValue​(​float​ ​fValue​) const
of the class ​Curve.

The method is usable only with the ​ModeAxis :
ValueWithCurve ​or ​ValueWithCurveNonSymmetricalPitch

You can call the method

virtual float ​CalcCurveValue​(​float​ fDeadZone,​float ​fxSat,​float ​fyMax,​float ​fExp,​float​ ​fValue​) const

of ​CSdk ​as a default calculation.

5.5 Read the current status of the 3dRudder
Status ​GetStatus​(​uint32_t​ ​nPortNumber​) const
This function read the current status of the 3dRudder connected to ​nPortNumber​, the possible values
of the ​Status ​are :

NoFootStayStill​:

Puts the 3dRudder on the floor, curved side below, without putting your feet on the device. The user waits for
approx. 5 seconds for the 3dRudder to boot up until 3 short beeps are heard.

Initialisation​:

The 3dRudder initialize for about 2 seconds. Once done a long beep will be heard from the device. The
3dRudder is then operational.

PutYourFeet​:

Put your first feet on the 3dRudder.

PutSecondFoot​:

Put your second Foot on the 3dRudder.

StayStill​:

The user must wait still for half a second for user calibration until a last short beep is heard from the device.
The 3dRudder is then ready to be used.

InUse​:

The 3dRudder is in use.

ExtendedMode:

The 3dRudder is in use and is fully operational with all the features enabled.

Page 13/19

3dRudder SDK 1.0

5.6 Read the User Offset Value
ErrorCode​ ​GetUserOffset​(​uint32_t​ ​nPortNumber​,​Axis​ *​pAxis​) const
This function reads the User Offset Value, i.e. the value (saved in ​Axis​) of the yaw, pitch, roll and
updown when the user is in its neutral position : those values could be used to calculate the Non
Symmetrical Pitch value for instance.

5.7 Read Force Sensor Values
uint16_t ​GetSensor​(​uint32_t​ ​nPortNumber​,​uint32_t​ ​nIndex​) const
This function reads the values of the 6 force sensors indexed by ​nIndex​ of the 3dRudder connected
on ​nPortNumber​. The unit of 16 bits returned value is given in grams.

The 3dRudder has 6 pressures sensors.

5.3.5 Get Axis Value

Page 14/19

3dRudder SDK 1.0

ErrorCode​ ​GetAxis​(​uint32_t​ ​nPortNumber​,​ModeAxis​ ​nMode​,​Axis​* ​pAxis​,const ​CurveArray​* ​pCurve​) const

This function reads the values of the ​Axis,​ with the current ​ModeAxis ​with the optional usage of the
curves defined by ​CurveArray​ for the 3dRudder Connected to ​nPortNumber​. ​The values are only valid
if the status is​ ​InUse ​or​ ​ExtendedMode​.
ErrorCode​ ​is the possible error code returned by this method.
The class ​Axis​ contains the value of the Axis :

class ​Axis
{
public:

float ​m_aX​;
float ​m_aY​;
float ​m_aZ​;
float ​m_rZ​;

};

m_​aX​ is the X Axis (you can use ​GetXAxis​()​ or ​GetPhysicalRoll​()​ ​to ​read it)
m_​aY​ is the Y Axis ​(you can use ​GetYAxis​()​ or ​GetPhysicalPitch​()​ ​to read it)
m_​aZ​ is the Z Axis ​(you can use ​GetZAxis​()​ or ​GetUpDown​()​ ​to read it)
m_​rZ​ is the Z Rotation ​(you can use ​GetZRotation​()​ or ​GetPhysicalYaw​()​ ​read it)

The class ​CurveArray ​defines the setting of curve of each axis.
By default, the CurveArray() is initialized with the FactoryCurves.

WARNING : since SDK version 0.7, the input values of the curves are normalized
This means that the x values should be in the range -1/1, corresponding to the following full scales of
angles :

● yaw full scale : -25/+25 degrees, which is the maximum acceptable yaw angle for long-lasting play

● pitch full scale : -18/+18 degrees, which is the maximum reachable pitch angle, due to 3dRudder shape

● roll full scale : -18/+18 degrees, which is the maximum reachable pitch angle, due to 3dRudder shape

● updown full scale : ​-1/1 (unchanged, no unit)

Page 15/19

3dRudder SDK 1.0

ModeAxis ​defines the current mode to get the value :
In standard use, we strongly recommend to use on of the 2 ModeAxis :

● NormalizedValueNonSymmetricalPitch
● ValueWithCurveNonSymmetricalPitch

Which allows the user to reach the maximum value for backward movement whatever it’s initial
position.

UserRefAngle:

Returns 4 values, depending on the status of the 3dRudder:

If status is ​InUse or ExtendedMode :

● yaw : angle in degrees related to neutral user position (i.e. feet position at init)
● pitch : angle in degrees related to neutral user position (i.e. feet position at init)
● roll : angle in degrees related to neutral user position (i.e. feet position at init)
● updown : raw up/down value ​between -1 and 1

In all other status​:

● yaw : heading angle in degrees related to magnetic North
● pitch : value in degrees related to vertical (Earth gravity)
● roll : value in degrees related to vertical (Earth gravity)
● updown : raw up/down value ​between -1 and 1

This mode doesn’t use the curves

NormalizedValue:

This function returns normalized values of each 4 axis between -1 and 1

It returns 4 values, depending on the status of the 3dRudder:

If status is ​InUse or ExtendedMode :

● yaw : heading value between -1 and 1, related to neutral user position (i.e. feet position at init).
As physical Full Scale is 25 degrees, the returned value is yaw UserRefAngle/25

● pitch : pitch value between -1 and 1, related to neutral user position (i.e. feet position at init)

As physical Full Scale is 18 degrees, the returned value is yaw UserRefAngle/18

● roll : roll value between -1 and 1, related to neutral user position (i.e. feet position at init)
As physical Full Scale is 18 degrees, the returned value is yaw UserRefAngle/18

● updown : raw up/down value ​between -1 and 1

In all other status​:

● Returns 0

This mode doesn’t use the curves

Page 16/19

3dRudder SDK 1.0

NormalizedValueNonSymmetricalPitch:

With this ModeAxis value, the returned values are the same as in ​NormalizedValue​, except for the pitch, for which the
value is magnified, depending on the initial user position, to ensure to be able to reach the full scale. This is especially
usefull when the user has a significant initial pitch to the rear, which is a standard position.

In this case, as the 18° angle (in reference to the user initial position) that leads to full scale in ​NormalizedValue​ mode
cannot be reached, the value is magnified so that the full scale is reached when the pitch reaches 18° in reference to the
vertical, which is the maximum value that the shape of the 3dRudder allows), without changing the neutral position.
In other words, the pitch value is magnified in the direction where the available angle is the smaller.

The calculation of the NonSymetricalPitch uses the unsymmetrical offset of the user calculated in ​InUse ​and
ExtendedMode​.

This mode doesn’t use the curves.

With this ModeAxis value, the returned values are the same as in ​NormalizedValue​, except for the pitch, for which the
value is magnified, depending on the initial user position, to ensure to be able to reach the full scale. This is especially
usefull when the user has a significant initial pitch to the rear, which is a standard position.

In this case, as the 18° angle (in reference to the user initial position) that leads to full scale in ​NormalizedValue​ mode
cannot be reached, the value is magnified so that the full scale is reached when the pitch reaches 18° in reference to the
vertical, which is the maximum value that the shape of the 3dRudder allows), without changing the neutral position.
In other words, the pitch value is magnified in the direction where the available angle is the smaller.

The calculation of the NonSymetricalPitch uses the unsymmetrical offset of the user calculated in ​InUse ​and
ExtendedMode​.

This mode doesn’t use the curves.

ValueWithCurve:

returns the value of the axis, using the curves.
The input value of the curve is the ​NormalizedValue​, the output of the function is the corresponding output of the
curve, for each axis.
The curve should have an input range of -1/+1, and can include deadzone and progressivity.

ValueWithCurveNonSymmetricalPitch:

returns the value of the axis, using the curves.
The input value of the curve is the ​NormalizedValueNonSymmetricalPitch​, the output of the function is the
corresponding output of the curve, for each axis.
The curve should have an input range of -1/+1, and can include deadzone and progressivity.

5.8 Events

void ​SetEvent​(​IEvent​ *​pEvent​) const
For version 0.6 and further of the SDK, it’s possible to get events. Currently the SDK manages two
events, one for the connection and the other one for the disconnection.
to use it, you should create a class derived from ​IEvent​ and define two method from the virtual one :

class ​CEvent ​ : public ​IEvent
{
public:

void ​OnConnect​(​uint32_t​ ​nDeviceNumber​);
void ​OnDisconnect​(​uint32_t​ ​nDeviceNumber​);

};

Warning: Those events are called from another thread !

Page 17/19

3dRudder SDK 1.0

5.9 Error Code
ns3dRudder::CSdk::ErrorCode​ ​define the error code used by the SDK:

Success​:

No error

NotConnected:

The 3dRudder is not connected.

Fail:

Fail to execute the method.

IncorrectCommand:

Incorrect command.

Timeout:

Communication with the 3dRudder timeout.

WrongSignature:

Wrong signature of the version of the Firmware.

NotReady:

The data you try to read is not ready.

5.10 Get the text of the error
const​ ​char​ ​*​GetErrorText​(​ErrorCode​ ​nError​) ​const

Translates the error code to human-readable value.

Page 18/19

3dRudder SDK 1.0

For all questions contact us :

● web site : ​http://www.3drudder.com/download/
 http://www.3drudder.com/developers/

● github : ​https://github.com/3DRudder
● mail : ​support@3drudder.com

And follow us on :
● facebook : ​https://www.facebook.com/3drudder
● twitter : ​https://twitter.com/3DRudder
● youtube : ​https://www.youtube.com/channel/UCq5xGN4UsDN1VO6ii9q05uw
● google+ : ​https://plus.google.com/106907277277246174396
● linkedin : ​https://www.linkedin.com/company/3drudder

Page 19/19

https://twitter.com/3DRudder
http://www.3drudder.com/developers/
mailto:support@3drudder.com
https://plus.google.com/106907277277246174396
https://www.facebook.com/3drudder
https://www.youtube.com/channel/UCq5xGN4UsDN1VO6ii9q05uw
https://www.linkedin.com/company/3drudder
https://github.com/3DRudder
http://www.3drudder.com/download/

