
Active Stereo on DirectX® 9

Technical Reference Manual

Part Number: 137-41904-10

© 2009-2011 Advanced Micro Devices Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products.
AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to discontinue or make changes to products, specifications, product
descriptions, and documentation at any time without notice. The information contained herein may be of a
preliminary or advance nature and is subject to change without notice. No license, whether express, implied,
arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set
forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims
any express or implied warranty, relating to its products including, but not limited to, the implied warranty of
merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s
products are not designed, intended, authorized or warranted for use as components in systems intended for
surgical implant into the body, or in other applications intended to support or sustain life, or in any other
application in which the failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.
Reproduction of this manual, or parts thereof, in any form, without the express written permission of Advanced
Micro Devices, Inc. is strictly prohibited.
USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Trademarks

AMD, the AMD Arrow logo, ATI, the ATI logo, AMD Athlon, AMD LIVE!, AMD Opteron, AMD Phenom, AMD
Sempron, AMD Turion, AMD64, All-in-Wonder, Avivo, Catalyst, CrossFireX, FirePro, FireStream,
HyperMemory, OverDrive, PowerPlay, PowerXpress, Radeon, Remote Wonder, Stream, SurroundView,
Theater, TV Wonder, The Ultimate Visual Experience, and combinations thereof are trademarks of Advanced
Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
Blu-ray Disc is a licensed trademark of the Blu-ray Disc Association.
HDMI is a licensed trademark of HDMI Licensing, LLC.
DisplayPort is a licensed trademark of Video Electronic Standards Association.
Microsoft, Windows, and Vista are registered trademarks of the Microsoft Corporation in the United States and/
or other jurisdictions.
Other names are for informational purposes only and may be trademarks of their respective owners.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories. Dolby and the double-D symbol are trademarks of
Dolby Laboratories.
© 1992-1997 Dolby Laboratories, Inc. All rights reserved.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's
copy protection technology in the device must be authorized by Rovi Corporation and is intended for home
and other limited pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.
Reverse engineering or disassembly is prohibited.

ii

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

Revision History
Table 1–1 Revision History

Date Revision Description

6/20/2011 1.07 Updated Requirements section
7/22/2010 1.06 Added ATI_STEREO_GETDISPLAYMODES support
2/04/2010 1.05 Added PrimaryAA command, support for non-Direct 3D 9Ex devices, several code

samples
1/14/2010 1.04 Added PerSurfAA command, removed fixed bugs from outstanding issues
12/01/2009 1.03 Updated outstanding issues, added version control structure
12/01/2009 1.02 Added blt control commands
11/13/2009 1.01 Updated ATI_STEREO_GETLINEOFFSET description
9/11/2009 1.0 Document creation

Contents

Chapter 1 Getting Started . 1
1.1 Background . 1

1.2 Requirements .1

1.3 Mechanism of Operation . 2

1.4 The Driver Communication Surface . 4

1.5 Known Limitations/Issues . 6

Chapter 2 Examples .9
2.1 Creating a Direct 3D 9 Device with Stereo . 10

2.2 Basic Render Code . 12

2.3 Helper Functions (SendStereoCommand) . 13

Index . 15

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

Figures

Chapter 1 Getting Started
Figure 2–1 3D Swap Chain Including Above-and-Below Tiled Display Buffers

with Padding to Ensure the Boundary Between the Left and Right Eye is Some
Multiple of Lines as Required by the Hardware . 3

Figure 2–2 3D Swap Chain Depicting a 1680 × 1050 Resolution Display with
Required Hardware Padding (38 Lines in this Case) . 4

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

Tables
Table 1–1 Revision History . iii

Chapter 1 Getting Started
Table 2–1 Driver Communication Surface . 4

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

1
Getting Started

1.1 Background

In order for stereo support to work, extra surfaces need to be created for the right-
side front and back buffers. Just like the front buffer in a regular swap chain, the front-
left and front-right need to be available to the driver to present to the screen so as to
keep both right and left surfaces visible. As there is no native support for this within
the API, AMD has implemented a backdoor mechanism which allows an application
to send commands to the driver in order to set stereo modes or receive data from the
driver. These include commands to turn stereo on (to display both left and right eyes
or just one for debugging), get the supported stereo display modes, or get the line
offset from the end of the left eye the right eye portion of the surface.

1.2 Requirements

The main requirements are:

• An AMD Radeon™ 5000 series or newer graphics card
• Display device that accepts the following input format:

• Frame sequential via DVI (some legacy 3D monitors)
• Frame sequential via VGA (limited projectors)
• Frame sequential via DisplayPort (new 3D monitors in 2011)
• Frame Packing format via HDMI™ (3D TVs and monitors that

support HDMI 1.4a Frame Packing)

Note: Glasses, either passive or shutter, will be provided by the display
manufacturer or third-party. The emitter for shutter glasses must be
controlled by the display device.

• AMD drivers with Active Stereo Direct 3D support
• Windows Vista® or Windows® 7
• Use of Direct 3D 9 or Direct 3D 9Ex API
• A single large Z buffer must be created to accommodate for both left and right

buffers and the hardware offset in-between (described in more detail in the rest
of this document).

• Appropriate processes for enabling stereo must be followed
• Include the provided header file atid3dstereo.h

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

1.3 Mechanism of Operation

The following process should be followed by an application to access stereo support:

• AMD Driver exposes special fourCC, AQBS, to advertise stereo support
• Application creates an IDirect3D9 interface by calling Direct3DCreate9
• Application creates an IDirect3DDevice device by calling
IDirect3D9::CreateDevice

• The device should be created in windowed mode (Windowed = TRUE in the
present parameters structure) even if the application creates a fullscreen device
(the same resolution can be used)

• The application creates an off-screen surface with the format set to the stereo
3D fourCC type AQBS. This should be done immediately after creating the
device. This will be used as a communication medium between the driver and
the application

• The application locks the surface and fills in the appropriate fields of the
returned communication structure: dwSignature='STER' and
dwCommand=ATI_STEREO_ENABLESTEREO (a full set of commands is described
later in this document)

• In Unlock the AMD driver will check the dwSignature and if it is valid check
dwCommand to see which command is sent. For
dwCommand=ATI_STEREO_ENABLESTEREO, it will double allocate the flip chain (2×
the height + hardware offset) once the device is set to fullscreen mode and set
the system to display both left and right buffers.

• If the application wants to enable Anti-Aliasing on the front/back buffers, then
the command ATI_STEREO_ENABLEPRIMARYAA must be sent.

• At this point, all resources created with D3DPOOL_DEFAULT must be freed to
ensure Reset completes successfully. This includes the AQBS surface.

• The application sends the command ATI_STEREO_GETDISPLAYMODES, once to get
the number of display modes and again to populate an array of display modes
(as allocated by the application). It should then select a valid fullscreen stereo
display mode for initializing the present parameters.

• The application should then call IDirect3DDevice9::Reset() with the present
parameters set to enable fullscreen mode and MultiSampleType set to a valid
hardware value greater than 1 (for example: 2 or 3). A valid hardware value
greater than 1 is required for stereo to work correctly and is ignored for multi-
sampling purposes unless the ATI_STEREO_ENABLEPRIMARYAA command was
sent prior to calling Reset. Setting this value to 0 or 1 may appear to work in
some cases, but will likely cause corruption and/or the hardware to hang.

• The AMD driver then receives the create for the flip chain and it will allocate
the proper size for each buffer

2 Getting Started

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

• The AQBS surface must be recreated and the application should send another
communication command the driver to request the line offset: the application
locks the fourCC surface, sets dwSignature='STER',
dwCommand=ATI_STEREO_GETLINEOFFSET, dwOutBufferSize = sizeof(DWORD)
and pOutBuffer = &dwLineOffset. The line offset will be written to
dwLineOffset after the application calls Unlock.

• When rendering to the right buffer the application needs to set the viewport Y
offset equal to the dwLineOffset value passed back when the
ATI_STEREO_GETLINEOFFSET command was sent. The left buffer will start at line
0. The following figure illustrates this.

Figure 2–1 3D Swap Chain Including Above-and-Below Tiled Display Buffers with Padding to Ensure
the Boundary Between the Left and Right Eye is Some Multiple of Lines as Required by the Hardware

Getting Started 3

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

Figure 2–2 3D Swap Chain Depicting a 1680 × 1050 Resolution Display with Required Hardware
Padding (38 Lines in this Case)

• The application presents once both left and right have been rendered and the
Present function is called.

• The display cycles between presented left and right buffers until next present
when it will switch to the next set of left and right buffers.

1.4 The Driver Communication Surface

In order to send commands to the driver and to receive data from the driver, a
communication surface must be used. The process for using this is as follows:

• Create an offscreen plain surface of format fourCC AQBS. The width and height
should be 10×10.

• Lock the surface. On lock, the driver will allocate and return a pointer to a
ATIDX9STEREOCOMMPACKET structure. This structure is the communication
surface.

• Assign and cast the pBits pointer to a locally created
ATIDX9STEREOCOMMPACKET pointer.

The elements of the communication surface are described below:
Table 2–1 Driver Communication Surface

Field Type Description

dwSignature DWORD Indicates to the driver that the app is sending a
command. Should be set to char sequence 'STER'.

dwSize DWORD Size of this structure. Passed to the app when the
communication surface is locked.

stereoCommand ATIDX9STEREOCOMMAND Command given to the driver chosen from the
ATIDX9STEREOCOMMAND enum. (Described below)

pResult HRESULT * Pointer to a buffer where the error code for the
stereoCommand will be written to. D3D_OK is returned
when successful. (Optional)

4 Getting Started

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

Field Type Description

dwOutBufferSize DWORD Size in bytes of optional buffer to place outgoing data
into. Must be specified if data is to be returned by
stereoCommand (i.e. get display modes or get line
offset). If no pointer is specified when data is to be
returned, an error will be written to pResult.

pOutBuffer BYTE * Pointer to buffer where the outgoing data will be
placed. Must be specified if data is to be returned by
stereoCommand (i.e. get display modes or get line
offset). If no pointer is specified when data is to be
returned, an error will be written to pResult.

dwInBufferSize DWORD Size in bytes of optional buffer containing input data.
Must be specified for SETSRCEYE and SETDSTEYE
commands.

pInBuffer BYTE * Pointer to a buffer where the input data is stored. Must
be specified for SETSRCEYE and SETDSTEYE commands
for which it is used to select the left or right eye.

The stereo commands are:

Command Description

ATI_STEREO_GETVERSIONDATA Returns a copy of ATIDX9STEREOVERSION
ATI_STEREO_ENABLESTEREO Enable stereo
ATI_STEREO_ENABLELEFTONLY Enable stereo but only display to the left eye.
ATI_STEREO_ENABLERIGHTONLY Enable stereo but only display to the right eye.
ATI_STEREO_GETLINEOFFSET Return the line offset to the beginning of the right eye. This command is

only available once the device is in fullscreen mode.
ATI_STEREO_GETDISPLAYMODES Returns the stereo modes available. The application will use the

ATIDX9GETDISPLAYMODES structure to get a list of stereo modes.
To retrieve the number of stereo modes available:
• Set pStereoModes to NULL
• Send the stereo command. The mode count will be returned in

dwNumModes
To retrieve the list of stereo modes:
• Allocate dwNumModes of D3DDISPLAYMODE structure size memory and

assign it to pStereoModes
• Send the stereo command. The number of modes written will be

returned in dwNumModes. The number of modes returned may be less
than the dwNumModes returned in the first step but will never be
greater

The application is responsible to free the memory allocated in the second
step.
See the example for usage.

Getting Started 5

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

Command Description

ATI_STEREO_SETSRCEYE Sets the source eye for blts and surface copy API commands. Left/Right
eye selection must be passed in using pInBuffer and dwInBufferSize.

Note: Draws are not affected by this command. A list of affected API
calls follows.

ATI_STEREO_SETDSTEYE Sets the dest eye for blts and surface copy API commands. Left/Right eye
selection must be passed in using pInBuffer and dwInBufferSize.

Note: Draws are not affected by this command. A list of affected API
calls follows.

ATI_STEREO_ENABLEPERSURFAA Enables per surface anti-aliasing. This ensures that each non-primary
render target will have its own AA buffer associated with it. This will
likely improve performance for AA enabled stereo applications at the
cost of extra memory usage.

ATI_STEREO_ENABLEPRIMARYAA Enables AA for front and back buffers. This must be set along with
MultiSampleType in D3DPRESENT_PARAMETERS when calling Reset or
ResetEx.

Note: This will not create independent AA buffers for primaries (i.e.
they are still be shared).

For ATI_STEREO_SETSRCEYE and ATI_STEREO_SETDSTEYE, following API calls are
affected if the source or destination is a surface representing the swapchain:

• StretchRect
• UpdateSurface
• GetFrontBufferData
• GetRenderTargetData

For ATI_STEREO_SETSRCEYE and ATI_STEREO_SETDSTEYE, dwInBufferSize must be
set to sizeof(DWORD) and pInBuffer must be a pointer to a DWORD containing one
of the following:

• ATI_STEREO_LEFTEYE
• ATI_STEREO_RIGHTEYE

The ATI_STEREO_GETVERSIONDATA command can be used to ensure developers are
using the correct version. The major and minor version returned by this command
should match the values in the header file.

1.5 Known Limitations/Issues

1. Using AA on Front and Back Buffers: To enable this when stereo is enabled,
the field MultiSampleType in D3DPRESENT_PARAMETERS must be set when calling
Reset/ResetEx and the command ATI_STEREO_ENABLEPRIMARYAA must be sent.
This applies to both Direct 3D 9 and Direct 3D 9Ex devices. If this command is
not sent, the MultiSampleType field in D3DPRESENT_PARAMETERS will not be used
for AA on the primary surfaces.

2. Using GDI: At present, GDI will not work with stereo enabled because there is
no shared primary.

6 Getting Started

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

3. Locking the Backbuffer: With stereo enabled, backbuffers cannot be locked.
4. Right Buffer Data Access: With the DirectX® 9 API, there is no way to lock

and view the right eye back or front buffers during normal operation. This is
because the API functions GetFrontBufferData and GetBackBuffer perform
blts and create surface interfaces using the width and height of the swap chain
specified with the presentation parameters so only the left buffer will ever get
copied or be accessible when these functions are used. Additionally, blts/
surface copies to the right eye using StretchRect and UpdateTexture will not
work because the DirectX runtime filters out rectangular co-ordinates that
exceed the declared boundaries of the surface. Workaround: The commands
ATI_STEREO_SETSRCEYE and ATI_STEREO_SETDSTEYE inform the driver that any
subsequent blt or surface copy commands from/to the swap chain will come
from and/or go to the specified eye(s). When set for the right eye source/dest,
rects passed in will be offset appropriately in the driver.

5. ATI_STEREO_GETDISPLAYMODES: The command ATI_STEREO_GETDISPLAYMODES
has not been implemented yet. At the moment, most standard resolutions will
be supported on ordinary CRT/LCD monitors. In the future this may be
restricted to fewer modes.

6. User Scissor: Setting a user scissor is not necessary in order to use stereo but
if it is used, ensure that it is set the same way the viewport is set. That is, if
rendering to the right eye set the start co-ordinates to (0, lineOffset)

7. ATI_STEREO_ENABLERIGHTONLY: This command is not currently supported. In
some cases, this command may result in a lost device and windows indicating
that the driver has stopped responding. AMD is working on a fix for this issue.

Getting Started 7

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

8 Getting Started

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

2
Examples

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

2.1 Creating a Direct 3D 9 Device with Stereo

void APPCLASS::CreateDevice()
{
 LPDIRECT3D9 m_pD3D;
 LPDIRECT3DDEVICE9 m_pD3DDev;
 D3DPRESENT_PARAMETERS d3dpp;
 D3DDISPLAYMODE d3dMode;
 D3DLOCKED_RECT lockedRect;
 DWORD flags;
 HRESULT hResult;
 DWORD modeSelect;

//Create the D3D interface and device
hr = Direct3DCreate9(D3D_SDK_VERSION);
GetWindowedPresentParameters(&d3dpp);
GetBehaviourFlags(&flags);
hr = pD3D->CreateDevice(0, D3DDEVTYPE_HAL, Hwnd(),flags, &d3dpp, &pD3DDev);
//Create resources including AQBS surface to be used to communicate with the driver
CreateDefaultPoolResources();
//Send the command to the driver using the temporary surface
hResult = SendStereoCommand(ATI_STEREO_ENABLESTEREO, NULL, 0, 0, 0);

if(hResult != D3D_OK)
{
 DisplayError("Stereo driver command EnableStereo Failed");
}

//Select a stereo mode for display
ATIDX9GETDISPLAYMODES displayModeParams;
displayModeParams.dwNumModes = 0;
displayModeParams.pStereoModes = NULL;

//Send stereo command to get the number of available stereo modes.
hResult = SendStereoCommand(ATI_STEREO_GETDISPLAYMODES, (BYTE *)(&displayModeParams),
 sizeof(ATIDX9GETDISPLAYMODES), 0, 0);
if(hResult != D3D_OK)
{
 DisplayError(“Stereo command GetDisplayMode Failed”);
}

if(displayModeParams.dwNumModes != 0)
{
 //Allocating memory to get the list of modes.
 displayModeParams.pStereoModes = new D3DDISPLAYMODE[displayModeParams.dwNumModes];

 //Send stereo command to get the list of stereo modes
 hResult = SendStereoCommand(ATI_STEREO_GETDISPLAYMODES, (BYTE *)(&displayModeParams),
 sizeof(ATIDX9GETDISPLAYMODES), 0, 0);
}

if(hResult != D3D_OK)
{
 DisplayError("Stereo command GetDisplayMode Failed");
}

GetFullscreenPresentParameters(&d3dpp);

If(displayModeParams.pStereoModes != NULL)
{
 //Select a display mode from the list.
 //"SelectDisplayMode()" is mode selection function to be implemented
 //by the application as per requirement.
 modeSelect = SelectDisplayMode(displayModeParams);
 D3DDISPLAYMODE mode = displayModeParams.pStereoModes[modeSelect];

10 Examples

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

 d3dpp.BackBufferWidth = mode.Width;
 d3dpp.BackBufferHeight = mode.Height;
 d3dpp.BackBufferFormat = (D3DFORMAT)mode.Format;
 d3dpp.FullScreen_RefreshRateInHz = mode.RefreshRate;

 //Free the memory allocated to store the mode list.
 delete[] displayModeParams.pStereoModes;
}

if (bIsAAEnabled())
{
 SendStereoCommand(ATI_STEREO_ENABLEPRIMARYAA, NULL, 0, 0, 0);
 d3dpp.MultiSampleType = GetAASamples();
}
else
{
 //A valid multisample value other then 0 or 1 must be set for stereo. (ex 2)
 d3dpp.MultiSampleType = D3DMULTISAMPLE_2_SAMPLES;
}

 //Resources allocated in the default pool must be freed before calling Reset
 FreeDefaultPoolResources();
 pD3DDev->Reset(&d3dpp);

 //Re-create resources including comm. surface
 CreateDefaultPoolResources();

 //Retrieve the line offset
 hResult = SendStereoCommand(ATI_STEREO_GETLINEOFFSET, (BYTE *)(&m_lineOffset),
 sizeof(DWORD), 0, 0);
}

Examples 11

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

2.2 Basic Render Code

void APPCLASS::Render()
{
 D3DVIEWPORT9 viewPort;

 BeginScene();
 // Draw Left Eye Scene
 viewPort.X = 0;
 viewPort.Y = 0;
 viewPort.Width = WinWidth();
 viewPort.Height = WinHeight();

 pD3DDev->SetViewPort(&viewPort);
 DrawLeft();

 // Draw Right Eye Scene
 viewPort.X = 0;
 viewPort.Y = m_lineOffset;
 viewPort.Width = WinWidth();
 viewPort.Height = WinHeight();
 pD3DDev->SetViewPort(&viewPort);
 DrawRight();

 EndScene();

 // Present both left and right buffers to the driver which will continuously
 // alternate between them until the next present
 pD3DDev->Present(NULL, NULL, NULL, NULL);
}

void APPCLASS::CopyToBackBuffer()
{
 D3DVIEWPORT9 viewPort;
 HRESULT hResult;
 IDirect3DSurface9 *pBackBuffer;
 RECT srcRect, dstRect;
 DWORD dwEye;

 m_pD3DDev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &pBackBuffer);

 memset(&viewPort, 0, sizeof(D3DVIEWPORT9));
 viewPort.X = 0;
 viewPort.Y = 0;
 viewPort.Width = WinWidth();
 viewPort.Height = m_lineOffset + WinHeight();

 hResult = m_pD3DDev->SetViewport(&viewPort);

 srcRect.top = 0;
 srcRect.bottom = WinHeight();
 srcRect.left = 0;
 srcRect.right = WinWidth();

 dstRect.top = 0;
 dstRect.bottom = WinHeight();
 dstRect.left = 0;
 dstRect.right = WinWidth();

 // Draw Left Eye image
 dwEye = ATI_STEREO_LEFTEYE;
 hResult = SendStereoCommand(ATI_STEREO_SETDSTEYE, NULL, 0, (BYTE *)&dwEye,
 sizeof(dwEye));
 hResult = m_pD3DDev->StretchRect(m_pLeftSurface, 0, pBackBuffer, &dstRect,
 D3DTEXF_LINEAR);

12 Examples

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

 // Draw Right Eye image
 dwEye = ATI_STEREO_RIGHTEYE;
 hResult = SendStereoCommand(ATI_STEREO_SETDSTEYE, NULL, 0, (BYTE *)&dwEye,
 sizeof(dwEye));
 hResult = m_pD3DDev->StretchRect(m_pRightSurface, 0, pBackBuffer, &dstRect,
 D3DTEXF_LINEAR);
}

2.3 Helper Functions (SendStereoCommand)

HRESULT APPCLASS::SendStereoCommand(
 ATIDX9STEREOCOMMAND stereoCommand,
 BYTE *pOutBuffer,
 DWORD dwOutBufferSize,
 BYTE *pInBuffer,
 DWORD dwInBufferSize)
{
 HRESULT hr;
 ATIDX9STEREOCOMMPACKET *pCommPacket;
 D3DLOCKED_RECT lockedRect;

 hr = m_pCommSurface->LockRect(&lockedRect, 0, 0);

 if(FAILED(hr))
 {
 SetErrorMsg("Failure in Stereo9L::SendStereoCommand(): LockRect");
 }

 pCommPacket = (ATIDX9STEREOCOMMPACKET *)(lockedRect.pBits);
 pCommPacket->dwSignature = 'STER';
 pCommPacket->pResult = &hr;
 pCommPacket->stereoCommand = stereoCommand;

 if (pOutBuffer && !dwOutBufferSize)
 {
 SetErrorMsg("Failure in Stereo9L::SendStereoCommand(): No outbuffer size specified");
 }

 pCommPacket->pOutBuffer = pOutBuffer;
 pCommPacket->dwOutBufferSize = dwOutBufferSize;

 if (pInBuffer && !dwInBufferSize)
 {
 SetErrorMsg("Failure in Stereo9L::SendStereoCommand(): No outbuffer size specified");
 }
 pCommPacket->pInBuffer = pInBuffer;
 pCommPacket->dwInBufferSize = dwInBufferSize;

 m_pCommSurface->UnlockRect();

 return hr;
}

Examples 13

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

14 Examples

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

Index

A
API 1, 6, 7
anti-aliasing 2

C
CRT 7

D
debugging 1

E
ENABLE 2, 6

G
graphics card 1

H
HDMI 1

R
RESET 2, 6, 11

S
SELECT 2, 10

V
via 1

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

Active Stereo on DirectX® 9
137-41904-10

mbullock
Rectangle

16

Active Stereo on DirectX® 9
137-41904-10

© 2009-2011 Advanced Micro Devices, Inc.
Proprietary and Confidential - Do not duplicate.

mbullock
Rectangle

	Active Stereo on DirectX® 9
	Contents
	Figures
	Tables
	Chapter 1 Getting Started
	1.1 Background
	1.2 Requirements
	1.3 Mechanism of Operation
	Figure 2–1 3D Swap Chain Including Above-and-Below Tiled Display Buffers with Padding to Ensure the Boundary Between the Left and Right Eye is Some Multiple of Lines as Required by the Hardware
	Figure 2–2 3D Swap Chain Depicting a 1680 × 1050 Resolution Display with Required Hardware Padding (38 Lines in this Case)

	1.4 The Driver Communication Surface
	Table 2–1 Driver Communication Surface

	1.5 Known Limitations/Issues

	Chapter 2 Examples
	2.1 Creating a Direct 3D 9 Device with Stereo
	2.2 Basic Render Code
	2.3 Helper Functions (SendStereoCommand)

	Index

