/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #ifndef OSG_STATE #define OSG_STATE 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef GL_FOG_COORDINATE_ARRAY #ifdef GL_FOG_COORDINATE_ARRAY_EXT #define GL_FOG_COORDINATE_ARRAY GL_FOG_COORDINATE_ARRAY_EXT #else #define GL_FOG_COORDINATE_ARRAY 0x8457 #endif #endif #ifndef GL_SECONDARY_COLOR_ARRAY #ifdef GL_SECONDARY_COLOR_ARRAY_EXT #define GL_SECONDARY_COLOR_ARRAY GL_SECONDARY_COLOR_ARRAY_EXT #else #define GL_SECONDARY_COLOR_ARRAY 0x845E #endif #endif #if !defined(GL_EXT_timer_query) && !defined(OSG_GL3_AVAILABLE) #ifdef _WIN32 typedef __int64 GLint64EXT; typedef unsigned __int64 GLuint64EXT; #else typedef long long int GLint64EXT; typedef unsigned long long int GLuint64EXT; #endif #endif namespace osg { /** macro for use with osg::StateAttribute::apply methods for detecting and * reporting OpenGL error messages.*/ #define OSG_GL_DEBUG(message) \ if (state.getFineGrainedErrorDetection()) \ { \ GLenum errorNo = glGetError(); \ if (errorNo!=GL_NO_ERROR) \ { \ osg::notify(WARN)<<"Warning: detected OpenGL error '"<getName()]; up.first = const_cast(uniform); up.second = value; } /** Push stateset onto state stack.*/ void pushStateSet(const StateSet* dstate); /** Pop stateset off state stack.*/ void popStateSet(); /** pop all statesets off state stack, ensuring it is empty ready for the next frame. * Note, to return OpenGL to default state, one should do any state.popAllStatSets(); state.apply().*/ void popAllStateSets(); /** Insert stateset onto state stack.*/ void insertStateSet(unsigned int pos,const StateSet* dstate); /** Pop stateset off state stack.*/ void removeStateSet(unsigned int pos); /** Get the number of StateSet's on the StateSet stack.*/ unsigned int getStateSetStackSize() { return static_cast(_stateStateStack.size()); } /** Pop StateSet's for the StateSet stack till its size equals the specified size.*/ void popStateSetStackToSize(unsigned int size) { while (_stateStateStack.size()>size) popStateSet(); } typedef std::vector StateSetStack; /** Get the StateSet stack.*/ StateSetStack& getStateSetStack() { return _stateStateStack; } /** Copy the modes and attributes which capture the current state.*/ void captureCurrentState(StateSet& stateset) const; /** reset the state object to an empty stack.*/ void reset(); inline const Viewport* getCurrentViewport() const { return static_cast(getLastAppliedAttribute(osg::StateAttribute::VIEWPORT)); } void setInitialViewMatrix(const osg::RefMatrix* matrix); inline const osg::Matrix& getInitialViewMatrix() const { return *_initialViewMatrix; } inline const osg::Matrix& getInitialInverseViewMatrix() const { return _initialInverseViewMatrix; } void applyProjectionMatrix(const osg::RefMatrix* matrix); inline const osg::Matrix& getProjectionMatrix() const { return *_projection; } void applyModelViewMatrix(const osg::RefMatrix* matrix); void applyModelViewMatrix(const osg::Matrix&); const osg::Matrix& getModelViewMatrix() const { return *_modelView; } void setUseModelViewAndProjectionUniforms(bool flag) { _useModelViewAndProjectionUniforms = flag; } bool getUseModelViewAndProjectionUniforms() const { return _useModelViewAndProjectionUniforms; } void updateModelViewAndProjectionMatrixUniforms(); void applyModelViewAndProjectionUniformsIfRequired(); osg::Uniform* getModelViewMatrixUniform() { return _modelViewMatrixUniform.get(); } osg::Uniform* getProjectionMatrixUniform() { return _projectionMatrixUniform.get(); } osg::Uniform* getModelViewProjectionMatrixUniform() { return _modelViewProjectionMatrixUniform.get(); } osg::Uniform* getNormalMatrixUniform() { return _normalMatrixUniform.get(); } Polytope getViewFrustum() const; void setUseVertexAttributeAliasing(bool flag) { _useVertexAttributeAliasing = flag; } bool getUseVertexAttributeAliasing() const { return _useVertexAttributeAliasing ; } typedef std::vector VertexAttribAliasList; /** Reset the vertex attribute aliasing to osg's default. This method needs to be called before render anything unless you really know what you're doing !*/ void resetVertexAttributeAlias(bool compactAliasing=true); /** Set the vertex attribute aliasing for "vertex". This method needs to be called before render anything unless you really know what you're doing !*/ void setVertexAlias(const VertexAttribAlias& alias) { _vertexAlias = alias; } const VertexAttribAlias& getVertexAlias() { return _vertexAlias; } /** Set the vertex attribute aliasing for "normal". This method needs to be called before render anything unless you really know what you're doing !*/ void setNormalAlias(const VertexAttribAlias& alias) { _normalAlias = alias; } const VertexAttribAlias& getNormalAlias() { return _normalAlias; } /** Set the vertex attribute aliasing for "color". This method needs to be called before render anything unless you really know what you're doing !*/ void setColorAlias(const VertexAttribAlias& alias) { _colorAlias = alias; } const VertexAttribAlias& getColorAlias() { return _colorAlias; } /** Set the vertex attribute aliasing for "secondary color". This method needs to be called before render anything unless you really know what you're doing !*/ void setSecondaryColorAlias(const VertexAttribAlias& alias) { _secondaryColorAlias = alias; } const VertexAttribAlias& getSecondaryColorAlias() { return _secondaryColorAlias; } /** Set the vertex attribute aliasing for "fog coord". This method needs to be called before render anything unless you really know what you're doing !*/ void setFogCoordAlias(const VertexAttribAlias& alias) { _fogCoordAlias = alias; } const VertexAttribAlias& getFogCoordAlias() { return _fogCoordAlias; } /** Set the vertex attribute aliasing list for texture coordinates. This method needs to be called before render anything unless you really know what you're doing !*/ void setTexCoordAliasList(const VertexAttribAliasList& aliasList) { _texCoordAliasList = aliasList; } const VertexAttribAliasList& getTexCoordAliasList() { return _texCoordAliasList; } /** Set the vertex attribute binding list. This method needs to be called before render anything unless you really know what you're doing !*/ void setAttributeBindingList(const Program::AttribBindingList& attribBindingList) { _attributeBindingList = attribBindingList; } const Program::AttribBindingList& getAttributeBindingList() { return _attributeBindingList; } bool convertVertexShaderSourceToOsgBuiltIns(std::string& source) const; /** Apply stateset.*/ void apply(const StateSet* dstate); /** Updates the OpenGL state so that it matches the \c StateSet at the * top of the stack of StateSets maintained internally by a * \c State. */ void apply(); /** Apply any shader composed state.*/ void applyShaderComposition(); /** Set whether a particular OpenGL mode is valid in the current graphics context. * Use to disable OpenGL modes that are not supported by current graphics drivers/context.*/ inline void setModeValidity(StateAttribute::GLMode mode,bool valid) { ModeStack& ms = _modeMap[mode]; ms.valid = valid; } /** Get whether a particular OpenGL mode is valid in the current graphics context. * Use to disable OpenGL modes that are not supported by current graphics drivers/context.*/ inline bool getModeValidity(StateAttribute::GLMode mode) { ModeStack& ms = _modeMap[mode]; return ms.valid; } inline void setGlobalDefaultModeValue(StateAttribute::GLMode mode,bool enabled) { ModeStack& ms = _modeMap[mode]; ms.global_default_value = enabled; } inline bool getGlobalDefaultModeValue(StateAttribute::GLMode mode) { return _modeMap[mode].global_default_value; } /** Apply an OpenGL mode if required. This is a wrapper around * \c glEnable() and \c glDisable(), that just actually calls these * functions if the \c enabled flag is different than the current * state. * @return \c true if the state was actually changed. \c false * otherwise. Notice that a \c false return does not indicate * an error, it just means that the mode was already set to the * same value as the \c enabled parameter. */ inline bool applyMode(StateAttribute::GLMode mode,bool enabled) { ModeStack& ms = _modeMap[mode]; ms.changed = true; return applyMode(mode,enabled,ms); } inline void setGlobalDefaultTextureModeValue(unsigned int unit, StateAttribute::GLMode mode,bool enabled) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; ms.global_default_value = enabled; } inline bool getGlobalDefaultTextureModeValue(unsigned int unit, StateAttribute::GLMode mode) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; return ms.global_default_value; } inline bool applyTextureMode(unsigned int unit, StateAttribute::GLMode mode,bool enabled) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; ms.changed = true; return applyModeOnTexUnit(unit,mode,enabled,ms); } inline void setGlobalDefaultAttribute(const StateAttribute* attribute) { AttributeStack& as = _attributeMap[attribute->getTypeMemberPair()]; as.global_default_attribute = attribute; } inline const StateAttribute* getGlobalDefaultAttribute(StateAttribute::Type type, unsigned int member=0) { AttributeStack& as = _attributeMap[StateAttribute::TypeMemberPair(type,member)]; return as.global_default_attribute.get(); } /** Apply an attribute if required. */ inline bool applyAttribute(const StateAttribute* attribute) { AttributeStack& as = _attributeMap[attribute->getTypeMemberPair()]; as.changed = true; return applyAttribute(attribute,as); } inline void setGlobalDefaultTextureAttribute(unsigned int unit, const StateAttribute* attribute) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[attribute->getTypeMemberPair()]; as.global_default_attribute = attribute; } inline const StateAttribute* getGlobalDefaultTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member = 0) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[StateAttribute::TypeMemberPair(type,member)]; return as.global_default_attribute.get(); } inline bool applyTextureAttribute(unsigned int unit, const StateAttribute* attribute) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[attribute->getTypeMemberPair()]; as.changed = true; return applyAttributeOnTexUnit(unit,attribute,as); } /** Mode has been set externally, update state to reflect this setting.*/ void haveAppliedMode(StateAttribute::GLMode mode,StateAttribute::GLModeValue value); /** Mode has been set externally, therefore dirty the associated mode in osg::State * so it is applied on next call to osg::State::apply(..)*/ void haveAppliedMode(StateAttribute::GLMode mode); /** Attribute has been applied externally, update state to reflect this setting.*/ void haveAppliedAttribute(const StateAttribute* attribute); /** Attribute has been applied externally, * and therefore this attribute type has been dirtied * and will need to be re-applied on next osg::State.apply(..). * note, if you have an osg::StateAttribute which you have applied externally * then use the have_applied(attribute) method as this will cause the osg::State to * track the current state more accurately and enable lazy state updating such * that only changed state will be applied.*/ void haveAppliedAttribute(StateAttribute::Type type, unsigned int member=0); /** Get whether the current specified mode is enabled (true) or disabled (false).*/ bool getLastAppliedMode(StateAttribute::GLMode mode) const; /** Get the current specified attribute, return NULL if one has not yet been applied.*/ const StateAttribute* getLastAppliedAttribute(StateAttribute::Type type, unsigned int member=0) const; /** texture Mode has been set externally, update state to reflect this setting.*/ void haveAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode,StateAttribute::GLModeValue value); /** texture Mode has been set externally, therefore dirty the associated mode in osg::State * so it is applied on next call to osg::State::apply(..)*/ void haveAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode); /** texture Attribute has been applied externally, update state to reflect this setting.*/ void haveAppliedTextureAttribute(unsigned int unit, const StateAttribute* attribute); /** texture Attribute has been applied externally, * and therefore this attribute type has been dirtied * and will need to be re-applied on next osg::State.apply(..). * note, if you have an osg::StateAttribute which you have applied externally * then use the have_applied(attribute) method as this will the osg::State to * track the current state more accurately and enable lazy state updating such * that only changed state will be applied.*/ void haveAppliedTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member=0); /** Get whether the current specified texture mode is enabled (true) or disabled (false).*/ bool getLastAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode) const; /** Get the current specified texture attribute, return NULL if one has not yet been applied.*/ const StateAttribute* getLastAppliedTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member=0) const; /** Dirty the modes previously applied in osg::State.*/ void dirtyAllModes(); /** Dirty the modes attributes previously applied in osg::State.*/ void dirtyAllAttributes(); /** disable the vertex, normal, color, tex coords, secondary color, fog coord and index arrays.*/ void disableAllVertexArrays(); /** dirty the vertex, normal, color, tex coords, secondary color, fog coord and index arrays.*/ void dirtyAllVertexArrays(); void setCurrentVertexBufferObject(osg::GLBufferObject* vbo) { _currentVBO = vbo; } const GLBufferObject* getCurrentVertexBufferObject() { return _currentVBO; } inline void bindVertexBufferObject(osg::GLBufferObject* vbo) { if (vbo == _currentVBO) return; if (vbo->isDirty()) vbo->compileBuffer(); else vbo->bindBuffer(); _currentVBO = vbo; } inline void unbindVertexBufferObject() { if (!_currentVBO) return; _glBindBuffer(GL_ARRAY_BUFFER_ARB,0); _currentVBO = 0; } void setCurrentElementBufferObject(osg::GLBufferObject* ebo) { _currentEBO = ebo; } const GLBufferObject* getCurrentElementBufferObject() { return _currentEBO; } inline void bindElementBufferObject(osg::GLBufferObject* ebo) { if (ebo == _currentEBO) return; if (ebo->isDirty()) ebo->compileBuffer(); else ebo->bindBuffer(); _currentEBO = ebo; } inline void unbindElementBufferObject() { if (!_currentEBO) return; _glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_ARB,0); _currentEBO = 0; } void setCurrentPixelBufferObject(osg::GLBufferObject* pbo) { _currentPBO = pbo; } const GLBufferObject* getCurrentPixelBufferObject() { return _currentPBO; } inline void bindPixelBufferObject(osg::GLBufferObject* pbo) { if (pbo == _currentPBO) return; if (pbo->isDirty()) pbo->compileBuffer(); else pbo->bindBuffer(); _currentPBO = pbo; } inline void unbindPixelBufferObject() { if (!_currentPBO) return; _glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB,0); _currentPBO = 0; } typedef std::vector IndicesGLushort; IndicesGLushort _quadIndicesGLushort[4]; typedef std::vector IndicesGLuint; IndicesGLuint _quadIndicesGLuint[4]; void drawQuads(GLint first, GLsizei count, GLsizei primCount=0); inline void glDrawArraysInstanced(GLenum mode, GLint first, GLsizei count, GLsizei primcount) { if (primcount>=1 && _glDrawArraysInstanced!=0) _glDrawArraysInstanced(mode, first, count, primcount); else glDrawArrays(mode, first, count); } inline void glDrawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount ) { if (primcount>=1 && _glDrawElementsInstanced!=0) _glDrawElementsInstanced(mode, count, type, indices, primcount); else glDrawElements(mode, count, type, indices); } inline void Vertex(float x, float y, float z, float w=1.0f) { #if defined(OSG_GL_VERTEX_FUNCS_AVAILABLE) && !defined(OSG_GLES1_AVAILABLE) if (_useVertexAttributeAliasing) _glVertexAttrib4f( _vertexAlias._location, x,y,z,w); else glVertex4f(x,y,z,w); #else _glVertexAttrib4f( _vertexAlias._location, x,y,z,w); #endif } inline void Color(float r, float g, float b, float a=1.0f) { #ifdef OSG_GL_VERTEX_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) _glVertexAttrib4f( _colorAlias._location, r,g,b,a); else glColor4f(r,g,b,a); #else _glVertexAttrib4f( _colorAlias._location, r,g,b,a); #endif } void Normal(float x, float y, float z) { #ifdef OSG_GL_VERTEX_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) _glVertexAttrib4f( _normalAlias._location, x,y,z,0.0); else glNormal3f(x,y,z); #else _glVertexAttrib4f( _normalAlias._location, x,y,z,0.0); #endif } void TexCoord(float x, float y=0.0f, float z=0.0f, float w=1.0f) { #if !defined(OSG_GLES1_AVAILABLE) #ifdef OSG_GL_VERTEX_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) _glVertexAttrib4f( _texCoordAliasList[0]._location, x,y,z,w); else glTexCoord4f(x,y,z,w); #else _glVertexAttrib4f( _texCoordAliasList[0]._location, x,y,z,w); #endif #endif } void MultiTexCoord(unsigned int unit, float x, float y=0.0f, float z=0.0f, float w=1.0f) { #if !defined(OSG_GLES1_AVAILABLE) #ifdef OSG_GL_VERTEX_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) _glVertexAttrib4f( _texCoordAliasList[unit]._location, x,y,z,w); else _glMultiTexCoord4f(GL_TEXTURE0+unit,x,y,z,w); #else _glVertexAttrib4f( _texCoordAliasList[unit]._location, x,y,z,w); #endif #endif } void VerteAttrib(unsigned int location, float x, float y=0.0f, float z=0.0f, float w=0.0f) { _glVertexAttrib4f( location, x,y,z,w); } /** Mark all the vertex attributes as being disabled but leave the disabling till a later call to applyDisablingOfVertexAttributes.*/ void lazyDisablingOfVertexAttributes(); /** Disable all the vertex attributes that have been marked as to be disabled.*/ void applyDisablingOfVertexAttributes(); /** Wrapper around glInterleavedArrays(..). * also resets the internal array points and modes within osg::State to keep the other * vertex array operations consistent. */ void setInterleavedArrays( GLenum format, GLsizei stride, const GLvoid* pointer); /** Set the vertex pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexPointer(const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setVertexPointer(array->getDataSize(),array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setVertexPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_VERTEX_ARRAY);glVertexPointer(..); * note, only updates values that change.*/ inline void setVertexPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_FALSE ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { setVertexAttribPointer(_vertexAlias._location, size, type, normalized, stride, ptr); } else { if (!_vertexArray._enabled || _vertexArray._dirty) { _vertexArray._enabled = true; glEnableClientState(GL_VERTEX_ARRAY); } //if (_vertexArray._pointer!=ptr || _vertexArray._dirty) { _vertexArray._pointer=ptr; glVertexPointer( size, type, stride, ptr ); } _vertexArray._lazy_disable = false; _vertexArray._dirty = false; _vertexArray._normalized = normalized; } #else setVertexAttribPointer(_vertexAlias._location, size, type, normalized, stride, ptr); #endif } /** wrapper around glDisableClientState(GL_VERTEX_ARRAY). * note, only updates values that change.*/ inline void disableVertexPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_vertexAlias._location); } else { if (_vertexArray._enabled || _vertexArray._dirty) { _vertexArray._lazy_disable = false; _vertexArray._enabled = false; _vertexArray._dirty = false; glDisableClientState(GL_VERTEX_ARRAY); } } #else disableVertexAttribPointer(_vertexAlias._location); #endif } inline void dirtyVertexPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_vertexAlias._location); } else { _vertexArray._pointer = 0; _vertexArray._dirty = true; } #else dirtyVertexAttribPointer(_vertexAlias._location); #endif } /** Set the normal pointer using an osg::Array, and manage any VBO that are required.*/ inline void setNormalPointer(const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setNormalPointer(array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setNormalPointer(array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_NORMAL_ARRAY);glNormalPointer(..); * note, only updates values that change.*/ inline void setNormalPointer( GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_FALSE ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { setVertexAttribPointer(_normalAlias._location, 3, type, normalized, stride, ptr); } else { if (!_normalArray._enabled || _normalArray._dirty) { _normalArray._enabled = true; glEnableClientState(GL_NORMAL_ARRAY); } //if (_normalArray._pointer!=ptr || _normalArray._dirty) { _normalArray._pointer=ptr; glNormalPointer( type, stride, ptr ); } _normalArray._lazy_disable = false; _normalArray._dirty = false; _normalArray._normalized = normalized; } #else setVertexAttribPointer(_normalAlias._location, 3, type, normalized, stride, ptr); #endif } /** wrapper around glDisableClientState(GL_NORMAL_ARRAY); * note, only updates values that change.*/ inline void disableNormalPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_normalAlias._location); } else { if (_normalArray._enabled || _normalArray._dirty) { _normalArray._lazy_disable = false; _normalArray._enabled = false; _normalArray._dirty = false; glDisableClientState(GL_NORMAL_ARRAY); } } #else disableVertexAttribPointer(_normalAlias._location); #endif } inline void dirtyNormalPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_normalAlias._location); } else { _normalArray._pointer = 0; _normalArray._dirty = true; } #else dirtyVertexAttribPointer(_normalAlias._location); #endif } /** Set the color pointer using an osg::Array, and manage any VBO that are required.*/ inline void setColorPointer(const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setColorPointer(array->getDataSize(),array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setColorPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_COLOR_ARRAY);glColorPointer(..); * note, only updates values that change.*/ inline void setColorPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_TRUE ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { setVertexAttribPointer(_colorAlias._location, size, type, normalized, stride, ptr); } else { if (!_colorArray._enabled || _colorArray._dirty) { _colorArray._enabled = true; glEnableClientState(GL_COLOR_ARRAY); } //if (_colorArray._pointer!=ptr || _colorArray._dirty) { _colorArray._pointer=ptr; glColorPointer( size, type, stride, ptr ); } _colorArray._lazy_disable = false; _colorArray._dirty = false; _colorArray._normalized = normalized; } #else setVertexAttribPointer(_colorAlias._location, size, type, normalized, stride, ptr); #endif } /** wrapper around glDisableClientState(GL_COLOR_ARRAY); * note, only updates values that change.*/ inline void disableColorPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_colorAlias._location); } else { if (_colorArray._enabled || _colorArray._dirty) { _colorArray._lazy_disable = false; _colorArray._enabled = false; _colorArray._dirty = false; glDisableClientState(GL_COLOR_ARRAY); } } #else disableVertexAttribPointer(_colorAlias._location); #endif } inline void dirtyColorPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_colorAlias._location); } else { _colorArray._pointer = 0; _colorArray._dirty = true; } #else dirtyVertexAttribPointer(_colorAlias._location); #endif } inline bool isSecondaryColorSupported() const { return _isSecondaryColorSupportResolved?_isSecondaryColorSupported:computeSecondaryColorSupported(); } /** Set the secondary color pointer using an osg::Array, and manage any VBO that are required.*/ inline void setSecondaryColorPointer(const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setSecondaryColorPointer(array->getDataSize(),array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setSecondaryColorPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_SECONDARY_COLOR_ARRAY);glSecondayColorPointer(..); * note, only updates values that change.*/ void setSecondaryColorPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_TRUE ); /** wrapper around glDisableClientState(GL_SECONDARY_COLOR_ARRAY); * note, only updates values that change.*/ inline void disableSecondaryColorPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_secondaryColorAlias._location); } else { if (_secondaryColorArray._enabled || _secondaryColorArray._dirty) { _secondaryColorArray._lazy_disable = false; _secondaryColorArray._enabled = false; _secondaryColorArray._dirty = false; if (isSecondaryColorSupported()) glDisableClientState(GL_SECONDARY_COLOR_ARRAY); } } #else disableVertexAttribPointer(_secondaryColorAlias._location); #endif } inline void dirtySecondaryColorPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_secondaryColorAlias._location); } else { _secondaryColorArray._pointer = 0; _secondaryColorArray._dirty = true; } #else dirtyVertexAttribPointer(_secondaryColorAlias._location); #endif } inline bool isFogCoordSupported() const { return _isFogCoordSupportResolved?_isFogCoordSupported:computeFogCoordSupported(); } /** Set the fog coord pointer using an osg::Array, and manage any VBO that are required.*/ inline void setFogCoordPointer(const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setFogCoordPointer(array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setFogCoordPointer(array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_FOG_COORDINATE_ARRAY);glFogCoordPointer(..); * note, only updates values that change.*/ void setFogCoordPointer( GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_FALSE ); /** wrapper around glDisableClientState(GL_FOG_COORDINATE_ARRAY); * note, only updates values that change.*/ inline void disableFogCoordPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_fogCoordAlias._location); } else { if (_fogArray._enabled || _fogArray._dirty) { _fogArray._lazy_disable = false; _fogArray._enabled = false; _fogArray._dirty = false; if (isFogCoordSupported()) glDisableClientState(GL_FOG_COORDINATE_ARRAY); } } #else disableVertexAttribPointer(_fogCoordAlias._location); #endif } inline void dirtyFogCoordPointer() { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_fogCoordAlias._location); } else { _fogArray._pointer = 0; _fogArray._dirty = true; } #else dirtyVertexAttribPointer(_fogCoordAlias._location); #endif } /** Set the tex coord pointer using an osg::Array, and manage any VBO that are required.*/ inline void setTexCoordPointer(unsigned int unit, const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setTexCoordPointer(unit, array->getDataSize(),array->getDataType(),0, (const GLvoid *)(vbo->getOffset(array->getBufferIndex())),array->getNormalize()); } else { unbindVertexBufferObject(); setTexCoordPointer(unit, array->getDataSize(),array->getDataType(),0,array->getDataPointer(),array->getNormalize()); } } } /** wrapper around glEnableClientState(GL_TEXTURE_COORD_ARRAY);glTexCoordPointer(..); * note, only updates values that change.*/ inline void setTexCoordPointer( unsigned int unit, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr, GLboolean normalized=GL_FALSE ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { setVertexAttribPointer(_texCoordAliasList[unit]._location, size, type, normalized, stride, ptr); } else { if (setClientActiveTextureUnit(unit)) { if ( unit >= _texCoordArrayList.size()) _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; if (!eap._enabled || eap._dirty) { eap._enabled = true; glEnableClientState(GL_TEXTURE_COORD_ARRAY); } //if (eap._pointer!=ptr || eap._dirty) { glTexCoordPointer( size, type, stride, ptr ); eap._pointer = ptr; } eap._lazy_disable = false; eap._dirty = false; eap._normalized = normalized; } } #else setVertexAttribPointer(_texCoordAliasList[unit]._location, size, type, normalized, stride, ptr); #endif } /** wrapper around glDisableClientState(GL_TEXTURE_COORD_ARRAY); * note, only updates values that change.*/ inline void disableTexCoordPointer( unsigned int unit ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointer(_texCoordAliasList[unit]._location); } else { if (setClientActiveTextureUnit(unit)) { if ( unit >= _texCoordArrayList.size()) _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; if (eap._enabled || eap._dirty) { eap._lazy_disable = false; eap._enabled = false; eap._dirty = false; glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } } #else disableVertexAttribPointer(_texCoordAliasList[unit]._location); #endif } inline void dirtyTexCoordPointer( unsigned int unit ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointer(_texCoordAliasList[unit]._location); } else { if ( unit >= _texCoordArrayList.size()) return; // _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; eap._pointer = 0; eap._dirty = true; } #else dirtyVertexAttribPointer(_texCoordAliasList[unit]._location); #endif } inline void disableTexCoordPointersAboveAndIncluding( unsigned int unit ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { disableVertexAttribPointersAboveAndIncluding(_texCoordAliasList[unit]._location); } else { while (unit<_texCoordArrayList.size()) { EnabledArrayPair& eap = _texCoordArrayList[unit]; if (eap._enabled || eap._dirty) { if (setClientActiveTextureUnit(unit)) { eap._lazy_disable = false; eap._enabled = false; eap._dirty = false; glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } ++unit; } } #else disableVertexAttribPointersAboveAndIncluding(_texCoordAliasList[unit]._location); #endif } inline void dirtyTexCoordPointersAboveAndIncluding( unsigned int unit ) { #ifdef OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE if (_useVertexAttributeAliasing) { dirtyVertexAttribPointersAboveAndIncluding(_texCoordAliasList[unit]._location); } else { while (unit<_texCoordArrayList.size()) { EnabledArrayPair& eap = _texCoordArrayList[unit]; eap._pointer = 0; eap._dirty = true; ++unit; } } #else dirtyVertexAttribPointersAboveAndIncluding(_texCoordAliasList[unit]._location); #endif } /// For GL>=2.0 uses GL_MAX_TEXTURE_COORDS, for GL<2 uses GL_MAX_TEXTURE_UNITS inline GLint getMaxTextureCoords() const { return _glMaxTextureCoords; } /// For GL>=2.0 uses GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, for GL<2 uses GL_MAX_TEXTURE_UNITS inline GLint getMaxTextureUnits() const { return _glMaxTextureUnits; } /** Set the current texture unit, return true if selected, * false if selection failed such as when multi texturing is not supported. * note, only updates values that change.*/ inline bool setActiveTextureUnit( unsigned int unit ); /** Get the current texture unit.*/ unsigned int getActiveTextureUnit() const { return _currentActiveTextureUnit; } /** Set the current tex coord array texture unit, return true if selected, * false if selection failed such as when multi texturing is not supported. * note, only updates values that change.*/ bool setClientActiveTextureUnit( unsigned int unit ); /** Get the current tex coord array texture unit.*/ unsigned int getClientActiveTextureUnit() const { return _currentClientActiveTextureUnit; } /** Set the vertex attrib pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexAttribPointer(unsigned int unit, const Array* array) { if (array) { GLBufferObject* vbo = isVertexBufferObjectSupported() ? array->getOrCreateGLBufferObject(_contextID) : 0; if (vbo) { bindVertexBufferObject(vbo); setVertexAttribPointer(unit, array->getDataSize(),array->getDataType(),array->getNormalize(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex()))); } else { unbindVertexBufferObject(); setVertexAttribPointer(unit, array->getDataSize(),array->getDataType(),array->getNormalize(),0,array->getDataPointer()); } } } /** Set the vertex attrib pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexAttribLPointer(unsigned int unit, const Array* array) { if (array) { GLBufferObject* vbo = array->getOrCreateGLBufferObject(_contextID); if (vbo) { bindVertexBufferObject(vbo); setVertexAttribLPointer(unit, array->getDataSize(),array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex()))); } else { unbindVertexBufferObject(); setVertexAttribLPointer(unit, array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } } /** Set the vertex attrib pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexAttribIPointer(unsigned int unit, const Array* array) { if (array) { GLBufferObject* vbo = array->getOrCreateGLBufferObject(_contextID); if (vbo) { bindVertexBufferObject(vbo); setVertexAttribIPointer(unit, array->getDataSize(),array->getDataType(),0,(const GLvoid *)(vbo->getOffset(array->getBufferIndex()))); } else { unbindVertexBufferObject(); setVertexAttribIPointer(unit, array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } } /** wrapper around glEnableVertexAttribArrayARB(index);glVertexAttribPointerARB(..); * note, only updates values that change.*/ void setVertexAttribPointer( unsigned int index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *ptr ); /** wrapper around glEnableVertexAttribArrayARB(index);glVertexAttribIPointer(..); * note, only updates values that change.*/ void setVertexAttribIPointer( unsigned int index, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ); /** wrapper around glEnableVertexAttribArrayARB(index);glVertexAttribLPointer(..); * note, only updates values that change.*/ void setVertexAttribLPointer( unsigned int index, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ); /** wrapper around DisableVertexAttribArrayARB(index); * note, only updates values that change.*/ void disableVertexAttribPointer( unsigned int index ); void disableVertexAttribPointersAboveAndIncluding( unsigned int index ); inline void dirtyVertexAttribPointer( unsigned int index ) { if (index<_vertexAttribArrayList.size()) { EnabledArrayPair& eap = _vertexAttribArrayList[index]; eap._pointer = 0; eap._dirty = true; } } inline void dirtyVertexAttribPointersAboveAndIncluding( unsigned int index ) { while (index<_vertexAttribArrayList.size()) { EnabledArrayPair& eap = _vertexAttribArrayList[index]; eap._pointer = 0; eap._dirty = true; ++index; } } bool isVertexBufferObjectSupported() const { return _isVertexBufferObjectSupportResolved?_isVertexBufferObjectSupported:computeVertexBufferObjectSupported(); } inline void setLastAppliedProgramObject(const Program::PerContextProgram* program) { if (_lastAppliedProgramObject!=program) { _lastAppliedProgramObject = program; } } inline const Program::PerContextProgram* getLastAppliedProgramObject() const { return _lastAppliedProgramObject; } inline GLint getUniformLocation( unsigned int uniformNameID ) const { return _lastAppliedProgramObject ? _lastAppliedProgramObject->getUniformLocation(uniformNameID) : -1; } /** * Alternative version of getUniformLocation( unsigned int uniformNameID ) * retrofited into OSG for backward compatibility with osgCal, * after uniform ids were refactored from std::strings to GLints in OSG version 2.9.10. * * Drawbacks: This method is not particularly fast. It has to access mutexed static * map of uniform ids. So don't overuse it or your app performance will suffer. */ inline GLint getUniformLocation( const std::string & uniformName ) const { return _lastAppliedProgramObject ? _lastAppliedProgramObject->getUniformLocation(uniformName) : -1; } inline GLint getAttribLocation( const std::string& name ) const { return _lastAppliedProgramObject ? _lastAppliedProgramObject->getAttribLocation(name) : -1; } typedef std::pair AttributePair; typedef std::vector AttributeVec; AttributeVec& getAttributeVec( const osg::StateAttribute* attribute ) { AttributeStack& as = _attributeMap[ attribute->getTypeMemberPair() ]; return as.attributeVec; } /** Set the frame stamp for the current frame.*/ inline void setFrameStamp(FrameStamp* fs) { _frameStamp = fs; } /** Get the frame stamp for the current frame.*/ inline FrameStamp* getFrameStamp() { return _frameStamp.get(); } /** Get the const frame stamp for the current frame.*/ inline const FrameStamp* getFrameStamp() const { return _frameStamp.get(); } /** Set the DisplaySettings. Note, nothing is applied, the visual settings are just * used in the State object to pass the current visual settings to Drawables * during rendering. */ inline void setDisplaySettings(DisplaySettings* vs) { _displaySettings = vs; } /** Get the DisplaySettings */ inline const DisplaySettings* getDisplaySettings() const { return _displaySettings.get(); } /** Set flag for early termination of the draw traversal.*/ void setAbortRenderingPtr(bool* abortPtr) { _abortRenderingPtr = abortPtr; } /** Get flag for early termination of the draw traversal, * if true steps should be taken to complete rendering early.*/ bool getAbortRendering() const { return _abortRenderingPtr!=0?(*_abortRenderingPtr):false; } struct DynamicObjectRenderingCompletedCallback : public osg::Referenced { virtual void completed(osg::State*) = 0; }; /** Set the callback to be called when the dynamic object count hits 0.*/ void setDynamicObjectRenderingCompletedCallback(DynamicObjectRenderingCompletedCallback* cb){ _completeDynamicObjectRenderingCallback = cb; } /** Get the callback to be called when the dynamic object count hits 0.*/ DynamicObjectRenderingCompletedCallback* getDynamicObjectRenderingCompletedCallback() { return _completeDynamicObjectRenderingCallback.get(); } /** Set the number of dynamic objects that will be rendered in this graphics context this frame.*/ void setDynamicObjectCount(unsigned int count, bool callCallbackOnZero = false) { if (_dynamicObjectCount != count) { _dynamicObjectCount = count; if (_dynamicObjectCount==0 && callCallbackOnZero && _completeDynamicObjectRenderingCallback.valid()) { _completeDynamicObjectRenderingCallback->completed(this); } } } /** Get the number of dynamic objects that will be rendered in this graphics context this frame.*/ unsigned int getDynamicObjectCount() const { return _dynamicObjectCount; } /** Decrement the number of dynamic objects left to render this frame, and once the count goes to zero call the * DynamicObjectRenderingCompletedCallback to inform of completion.*/ inline void decrementDynamicObjectCount() { --_dynamicObjectCount; if (_dynamicObjectCount==0 && _completeDynamicObjectRenderingCallback.valid()) { _completeDynamicObjectRenderingCallback->completed(this); } } void setMaxTexturePoolSize(unsigned int size); unsigned int getMaxTexturePoolSize() const { return _maxTexturePoolSize; } void setMaxBufferObjectPoolSize(unsigned int size); unsigned int getMaxBufferObjectPoolSize() const { return _maxBufferObjectPoolSize; } enum CheckForGLErrors { /** NEVER_CHECK_GL_ERRORS hints that OpenGL need not be checked for, this is the fastest option since checking for errors does incurr a small overhead.*/ NEVER_CHECK_GL_ERRORS, /** ONCE_PER_FRAME means that OpenGl errors will be checked for once per frame, the overhead is still small, but at least OpenGL errors that are occurring will be caught, the reporting isn't fine grained enough for debugging purposes.*/ ONCE_PER_FRAME, /** ONCE_PER_ATTRIBUTE means that OpenGL errors will be checked for after every attribute is applied, allow errors to be directly associated with particular operations which makes debugging much easier.*/ ONCE_PER_ATTRIBUTE }; /** Set whether and how often OpenGL errors should be checked for.*/ void setCheckForGLErrors(CheckForGLErrors check) { _checkGLErrors = check; } /** Get whether and how often OpenGL errors should be checked for.*/ CheckForGLErrors getCheckForGLErrors() const { return _checkGLErrors; } bool checkGLErrors(const char* str) const; bool checkGLErrors(StateAttribute::GLMode mode) const; bool checkGLErrors(const StateAttribute* attribute) const; /** print out the internal details of osg::State - useful for debugging.*/ void print(std::ostream& fout) const; /** Initialize extension used by osg:::State.*/ void initializeExtensionProcs(); virtual void objectDeleted(void* object); /** Get the GL adapter object used to map OpenGL 1.0 glBegin/glEnd usage to vertex arrays.*/ inline GLBeginEndAdapter& getGLBeginEndAdapter() { return _glBeginEndAdapter; } /** Get the helper class for dispatching osg::Arrays as OpenGL attribute data.*/ inline ArrayDispatchers& getArrayDispatchers() { return _arrayDispatchers; } /** Set the helper class that provides applications with estimate on how much different graphics operations will cost.*/ inline void setGraphicsCostEstimator(GraphicsCostEstimator* gce) { _graphicsCostEstimator = gce; } /** Get the helper class that provides applications with estimate on how much different graphics operations will cost.*/ inline GraphicsCostEstimator* getGraphicsCostEstimator() { return _graphicsCostEstimator.get(); } /** Get the cont helper class that provides applications with estimate on how much different graphics operations will cost.*/ inline const GraphicsCostEstimator* getGraphicsCostEstimator() const { return _graphicsCostEstimator.get(); } /** Support for synchronizing the system time and the timestamp * counter available with ARB_timer_query. Note that State * doesn't update these values itself. */ Timer_t getStartTick() const { return _startTick; } void setStartTick(Timer_t tick) { _startTick = tick; } Timer_t getGpuTick() const { return _gpuTick; } double getGpuTime() const { return osg::Timer::instance()->delta_s(_startTick, _gpuTick); } GLuint64EXT getGpuTimestamp() const { return _gpuTimestamp; } void setGpuTimestamp(Timer_t tick, GLuint64EXT timestamp) { _gpuTick = tick; _gpuTimestamp = timestamp; } int getTimestampBits() const { return _timestampBits; } void setTimestampBits(int bits) { _timestampBits = bits; } /** called by the GraphicsContext just before GraphicsContext::swapBuffersImplementation().*/ virtual void frameCompleted(); protected: virtual ~State(); GraphicsContext* _graphicsContext; unsigned int _contextID; bool _shaderCompositionEnabled; bool _shaderCompositionDirty; osg::ref_ptr _shaderComposer; osg::Program* _currentShaderCompositionProgram; StateSet::UniformList _currentShaderCompositionUniformList; ref_ptr _frameStamp; ref_ptr _identity; ref_ptr _initialViewMatrix; ref_ptr _projection; ref_ptr _modelView; ref_ptr _modelViewCache; bool _useModelViewAndProjectionUniforms; ref_ptr _modelViewMatrixUniform; ref_ptr _projectionMatrixUniform; ref_ptr _modelViewProjectionMatrixUniform; ref_ptr _normalMatrixUniform; Matrix _initialInverseViewMatrix; ref_ptr _displaySettings; bool* _abortRenderingPtr; CheckForGLErrors _checkGLErrors; bool _useVertexAttributeAliasing; VertexAttribAlias _vertexAlias; VertexAttribAlias _normalAlias; VertexAttribAlias _colorAlias; VertexAttribAlias _secondaryColorAlias; VertexAttribAlias _fogCoordAlias; VertexAttribAliasList _texCoordAliasList; Program::AttribBindingList _attributeBindingList; void setUpVertexAttribAlias(VertexAttribAlias& alias, GLuint location, const std::string glName, const std::string osgName, const std::string& declaration); struct ModeStack { typedef std::vector ValueVec; ModeStack() { valid = true; changed = false; last_applied_value = false; global_default_value = false; } void print(std::ostream& fout) const; bool valid; bool changed; bool last_applied_value; bool global_default_value; ValueVec valueVec; }; struct AttributeStack { AttributeStack() { changed = false; last_applied_attribute = 0L; last_applied_shadercomponent = 0L; global_default_attribute = 0L; } void print(std::ostream& fout) const; /** apply an attribute if required, passing in attribute and appropriate attribute stack */ bool changed; const StateAttribute* last_applied_attribute; const ShaderComponent* last_applied_shadercomponent; ref_ptr global_default_attribute; AttributeVec attributeVec; }; struct UniformStack { typedef std::pair UniformPair; typedef std::vector UniformVec; UniformStack() {} void print(std::ostream& fout) const; UniformVec uniformVec; }; /** Apply an OpenGL mode if required, passing in mode, enable flag and * appropriate mode stack. This is a wrapper around \c glEnable() and * \c glDisable(), that just actually calls these functions if the * \c enabled flag is different than the current state. * @return \c true if the state was actually changed. \c false * otherwise. Notice that a \c false return does not indicate * an error, it just means that the mode was already set to the * same value as the \c enabled parameter. */ inline bool applyMode(StateAttribute::GLMode mode,bool enabled,ModeStack& ms) { if (ms.valid && ms.last_applied_value != enabled) { ms.last_applied_value = enabled; if (enabled) glEnable(mode); else glDisable(mode); if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(mode); return true; } else return false; } inline bool applyModeOnTexUnit(unsigned int unit,StateAttribute::GLMode mode,bool enabled,ModeStack& ms) { if (ms.valid && ms.last_applied_value != enabled) { if (setActiveTextureUnit(unit)) { ms.last_applied_value = enabled; if (enabled) glEnable(mode); else glDisable(mode); if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(mode); return true; } else return false; } else return false; } /** apply an attribute if required, passing in attribute and appropriate attribute stack */ inline bool applyAttribute(const StateAttribute* attribute,AttributeStack& as) { if (as.last_applied_attribute != attribute) { if (!as.global_default_attribute.valid()) as.global_default_attribute = dynamic_cast(attribute->cloneType()); as.last_applied_attribute = attribute; attribute->apply(*this); const ShaderComponent* sc = attribute->getShaderComponent(); if (as.last_applied_shadercomponent != sc) { as.last_applied_shadercomponent = sc; _shaderCompositionDirty = true; } if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(attribute); return true; } else return false; } inline bool applyAttributeOnTexUnit(unsigned int unit,const StateAttribute* attribute,AttributeStack& as) { if (as.last_applied_attribute != attribute) { if (setActiveTextureUnit(unit)) { if (!as.global_default_attribute.valid()) as.global_default_attribute = dynamic_cast(attribute->cloneType()); as.last_applied_attribute = attribute; attribute->apply(*this); const ShaderComponent* sc = attribute->getShaderComponent(); if (as.last_applied_shadercomponent != sc) { as.last_applied_shadercomponent = sc; _shaderCompositionDirty = true; } if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(attribute); return true; } else return false; } else return false; } inline bool applyGlobalDefaultAttribute(AttributeStack& as) { if (as.last_applied_attribute != as.global_default_attribute.get()) { as.last_applied_attribute = as.global_default_attribute.get(); if (as.global_default_attribute.valid()) { as.global_default_attribute->apply(*this); const ShaderComponent* sc = as.global_default_attribute->getShaderComponent(); if (as.last_applied_shadercomponent != sc) { as.last_applied_shadercomponent = sc; _shaderCompositionDirty = true; } if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(as.global_default_attribute.get()); } return true; } else return false; } inline bool applyGlobalDefaultAttributeOnTexUnit(unsigned int unit,AttributeStack& as) { if (as.last_applied_attribute != as.global_default_attribute.get()) { if (setActiveTextureUnit(unit)) { as.last_applied_attribute = as.global_default_attribute.get(); if (as.global_default_attribute.valid()) { as.global_default_attribute->apply(*this); const ShaderComponent* sc = as.global_default_attribute->getShaderComponent(); if (as.last_applied_shadercomponent != sc) { as.last_applied_shadercomponent = sc; _shaderCompositionDirty = true; } if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(as.global_default_attribute.get()); } return true; } else return false; } else return false; } typedef std::map ModeMap; typedef std::vector TextureModeMapList; typedef std::map AttributeMap; typedef std::vector TextureAttributeMapList; typedef std::map UniformMap; typedef std::vector > MatrixStack; typedef std::set AppliedProgramObjectSet; ModeMap _modeMap; AttributeMap _attributeMap; UniformMap _uniformMap; TextureModeMapList _textureModeMapList; TextureAttributeMapList _textureAttributeMapList; AppliedProgramObjectSet _appliedProgramObjectSet; const Program::PerContextProgram* _lastAppliedProgramObject; StateSetStack _stateStateStack; unsigned int _maxTexturePoolSize; unsigned int _maxBufferObjectPoolSize; struct EnabledArrayPair { EnabledArrayPair():_lazy_disable(false),_dirty(true),_enabled(false),_normalized(0),_pointer(0) {} EnabledArrayPair(const EnabledArrayPair& eap):_lazy_disable(eap._lazy_disable),_dirty(eap._dirty), _enabled(eap._enabled),_normalized(eap._normalized),_pointer(eap._pointer) {} EnabledArrayPair& operator = (const EnabledArrayPair& eap) { _lazy_disable = eap._lazy_disable;_dirty=eap._dirty; _enabled=eap._enabled; _normalized=eap._normalized;_pointer=eap._pointer; return *this; } bool _lazy_disable; bool _dirty; bool _enabled; GLboolean _normalized; const GLvoid* _pointer; }; typedef std::vector EnabledTexCoordArrayList; typedef std::vector EnabledVertexAttribArrayList; EnabledArrayPair _vertexArray; EnabledArrayPair _normalArray; EnabledArrayPair _colorArray; EnabledArrayPair _secondaryColorArray; EnabledArrayPair _fogArray; EnabledTexCoordArrayList _texCoordArrayList; EnabledVertexAttribArrayList _vertexAttribArrayList; unsigned int _currentActiveTextureUnit; unsigned int _currentClientActiveTextureUnit; GLBufferObject* _currentVBO; GLBufferObject* _currentEBO; GLBufferObject* _currentPBO; inline ModeMap& getOrCreateTextureModeMap(unsigned int unit) { if (unit>=_textureModeMapList.size()) _textureModeMapList.resize(unit+1); return _textureModeMapList[unit]; } inline AttributeMap& getOrCreateTextureAttributeMap(unsigned int unit) { if (unit>=_textureAttributeMapList.size()) _textureAttributeMapList.resize(unit+1); return _textureAttributeMapList[unit]; } inline void pushModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void pushAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void pushUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void popModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void popAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void popUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void applyModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void applyAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void applyUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void applyModeMap(ModeMap& modeMap); inline void applyAttributeMap(AttributeMap& attributeMap); inline void applyUniformMap(UniformMap& uniformMap); inline void applyModeListOnTexUnit(unsigned int unit,ModeMap& modeMap,const StateSet::ModeList& modeList); inline void applyAttributeListOnTexUnit(unsigned int unit,AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void applyModeMapOnTexUnit(unsigned int unit,ModeMap& modeMap); inline void applyAttributeMapOnTexUnit(unsigned int unit,AttributeMap& attributeMap); void haveAppliedMode(ModeMap& modeMap,StateAttribute::GLMode mode,StateAttribute::GLModeValue value); void haveAppliedMode(ModeMap& modeMap,StateAttribute::GLMode mode); void haveAppliedAttribute(AttributeMap& attributeMap,const StateAttribute* attribute); void haveAppliedAttribute(AttributeMap& attributeMap,StateAttribute::Type type, unsigned int member); bool getLastAppliedMode(const ModeMap& modeMap,StateAttribute::GLMode mode) const; const StateAttribute* getLastAppliedAttribute(const AttributeMap& attributeMap,StateAttribute::Type type, unsigned int member) const; void loadModelViewMatrix(); mutable bool _isSecondaryColorSupportResolved; mutable bool _isSecondaryColorSupported; bool computeSecondaryColorSupported() const; mutable bool _isFogCoordSupportResolved; mutable bool _isFogCoordSupported; bool computeFogCoordSupported() const; mutable bool _isVertexBufferObjectSupportResolved; mutable bool _isVertexBufferObjectSupported; bool computeVertexBufferObjectSupported() const; typedef void (GL_APIENTRY * ActiveTextureProc) (GLenum texture); typedef void (GL_APIENTRY * FogCoordPointerProc) (GLenum type, GLsizei stride, const GLvoid *pointer); typedef void (GL_APIENTRY * SecondaryColorPointerProc) (GLint size, GLenum type, GLsizei stride, const GLvoid *pointer); typedef void (GL_APIENTRY * MultiTexCoord4fProc) (GLenum target, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GL_APIENTRY * VertexAttrib4fProc)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GL_APIENTRY * VertexAttrib4fvProc)(GLuint index, const GLfloat *v); typedef void (GL_APIENTRY * VertexAttribPointerProc) (unsigned int, GLint, GLenum, GLboolean normalized, GLsizei stride, const GLvoid *pointer); typedef void (GL_APIENTRY * VertexAttribIPointerProc) (unsigned int, GLint, GLenum, GLsizei stride, const GLvoid *pointer); typedef void (GL_APIENTRY * VertexAttribLPointerProc) (unsigned int, GLint, GLenum, GLsizei stride, const GLvoid *pointer); typedef void (GL_APIENTRY * EnableVertexAttribProc) (unsigned int); typedef void (GL_APIENTRY * DisableVertexAttribProc) (unsigned int); typedef void (GL_APIENTRY * BindBufferProc) (GLenum target, GLuint buffer); typedef void (GL_APIENTRY * DrawArraysInstancedProc)( GLenum mode, GLint first, GLsizei count, GLsizei primcount ); typedef void (GL_APIENTRY * DrawElementsInstancedProc)( GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount ); bool _extensionProcsInitialized; GLint _glMaxTextureCoords; GLint _glMaxTextureUnits; ActiveTextureProc _glClientActiveTexture; ActiveTextureProc _glActiveTexture; MultiTexCoord4fProc _glMultiTexCoord4f; VertexAttrib4fProc _glVertexAttrib4f; VertexAttrib4fvProc _glVertexAttrib4fv; FogCoordPointerProc _glFogCoordPointer; SecondaryColorPointerProc _glSecondaryColorPointer; VertexAttribPointerProc _glVertexAttribPointer; VertexAttribIPointerProc _glVertexAttribIPointer; VertexAttribLPointerProc _glVertexAttribLPointer; EnableVertexAttribProc _glEnableVertexAttribArray; DisableVertexAttribProc _glDisableVertexAttribArray; BindBufferProc _glBindBuffer; DrawArraysInstancedProc _glDrawArraysInstanced; DrawElementsInstancedProc _glDrawElementsInstanced; unsigned int _dynamicObjectCount; osg::ref_ptr _completeDynamicObjectRenderingCallback; GLBeginEndAdapter _glBeginEndAdapter; ArrayDispatchers _arrayDispatchers; osg::ref_ptr _graphicsCostEstimator; Timer_t _startTick; Timer_t _gpuTick; GLuint64EXT _gpuTimestamp; int _timestampBits; }; inline void State::pushModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { for(StateSet::ModeList::const_iterator mitr=modeList.begin(); mitr!=modeList.end(); ++mitr) { // get the mode stack for incoming GLmode {mitr->first}. ModeStack& ms = modeMap[mitr->first]; if (ms.valueVec.empty()) { // first pair so simply push incoming pair to back. ms.valueVec.push_back(mitr->second); } else if ((ms.valueVec.back() & StateAttribute::OVERRIDE) && !(mitr->second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. ms.valueVec.push_back(ms.valueVec.back()); } else { // no override on so simply push incoming pair to back. ms.valueVec.push_back(mitr->second); } ms.changed = true; } } inline void State::pushAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { for(StateSet::AttributeList::const_iterator aitr=attributeList.begin(); aitr!=attributeList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. AttributeStack& as = attributeMap[aitr->first]; if (as.attributeVec.empty()) { // first pair so simply push incoming pair to back. as.attributeVec.push_back( AttributePair(aitr->second.first.get(),aitr->second.second)); } else if ((as.attributeVec.back().second & StateAttribute::OVERRIDE) && !(aitr->second.second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. as.attributeVec.push_back(as.attributeVec.back()); } else { // no override on so simply push incoming pair to back. as.attributeVec.push_back( AttributePair(aitr->second.first.get(),aitr->second.second)); } as.changed = true; } } inline void State::pushUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { for(StateSet::UniformList::const_iterator aitr=uniformList.begin(); aitr!=uniformList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. UniformStack& us = uniformMap[aitr->first]; if (us.uniformVec.empty()) { // first pair so simply push incoming pair to back. us.uniformVec.push_back( UniformStack::UniformPair(aitr->second.first.get(),aitr->second.second)); } else if ((us.uniformVec.back().second & StateAttribute::OVERRIDE) && !(aitr->second.second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. us.uniformVec.push_back(us.uniformVec.back()); } else { // no override on so simply push incoming pair to back. us.uniformVec.push_back( UniformStack::UniformPair(aitr->second.first.get(),aitr->second.second)); } } } inline void State::popModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { for(StateSet::ModeList::const_iterator mitr=modeList.begin(); mitr!=modeList.end(); ++mitr) { // get the mode stack for incoming GLmode {mitr->first}. ModeStack& ms = modeMap[mitr->first]; if (!ms.valueVec.empty()) { ms.valueVec.pop_back(); } ms.changed = true; } } inline void State::popAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { for(StateSet::AttributeList::const_iterator aitr=attributeList.begin(); aitr!=attributeList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. AttributeStack& as = attributeMap[aitr->first]; if (!as.attributeVec.empty()) { as.attributeVec.pop_back(); } as.changed = true; } } inline void State::popUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { for(StateSet::UniformList::const_iterator aitr=uniformList.begin(); aitr!=uniformList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. UniformStack& us = uniformMap[aitr->first]; if (!us.uniformVec.empty()) { us.uniformVec.pop_back(); } } } inline void State::applyModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { StateSet::ModeList::const_iterator ds_mitr = modeList.begin(); ModeMap::iterator this_mitr=modeMap.begin(); while (this_mitr!=modeMap.end() && ds_mitr!=modeList.end()) { if (this_mitr->firstfirst) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(this_mitr->first,ms.global_default_value,ms); } } ++this_mitr; } else if (ds_mitr->firstfirst) { // ds_mitr->first is a new mode, therefore // need to insert a new mode entry for ds_mistr->first. ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyMode(ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; ++ds_mitr; } else { // this_mitr & ds_mitr refer to the same mode, check the override // if any otherwise just apply the incoming mode. ModeStack& ms = this_mitr->second; if (!ms.valueVec.empty() && (ms.valueVec.back() & StateAttribute::OVERRIDE) && !(ds_mitr->second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on modes. if (ms.changed) { ms.changed = false; bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } } else { // no override on or no previous entry, therefore consider incoming mode. bool new_value = ds_mitr->second & StateAttribute::ON; if (applyMode(ds_mitr->first,new_value,ms)) { ms.changed = true; } } ++this_mitr; ++ds_mitr; } } // iterator over the remaining state modes to apply any previous changes. for(; this_mitr!=modeMap.end(); ++this_mitr) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(this_mitr->first,ms.global_default_value,ms); } } } // iterator over the remaining incoming modes to apply any new mode. for(; ds_mitr!=modeList.end(); ++ds_mitr) { ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyMode(ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; } } inline void State::applyModeListOnTexUnit(unsigned int unit,ModeMap& modeMap,const StateSet::ModeList& modeList) { StateSet::ModeList::const_iterator ds_mitr = modeList.begin(); ModeMap::iterator this_mitr=modeMap.begin(); while (this_mitr!=modeMap.end() && ds_mitr!=modeList.end()) { if (this_mitr->firstfirst) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyModeOnTexUnit(unit,this_mitr->first,new_value,ms); } else { // assume default of disabled. applyModeOnTexUnit(unit,this_mitr->first,ms.global_default_value,ms); } } ++this_mitr; } else if (ds_mitr->firstfirst) { // ds_mitr->first is a new mode, therefore // need to insert a new mode entry for ds_mistr->first. ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyModeOnTexUnit(unit,ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; ++ds_mitr; } else { // this_mitr & ds_mitr refer to the same mode, check the override // if any otherwise just apply the incoming mode. ModeStack& ms = this_mitr->second; if (!ms.valueVec.empty() && (ms.valueVec.back() & StateAttribute::OVERRIDE) && !(ds_mitr->second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on modes. if (ms.changed) { ms.changed = false; bool new_value = ms.valueVec.back() & StateAttribute::ON; applyModeOnTexUnit(unit,this_mitr->first,new_value,ms); } } else { // no override on or no previous entry, therefore consider incoming mode. bool new_value = ds_mitr->second & StateAttribute::ON; if (applyModeOnTexUnit(unit,ds_mitr->first,new_value,ms)) { ms.changed = true; } } ++this_mitr; ++ds_mitr; } } // iterator over the remaining state modes to apply any previous changes. for(; this_mitr!=modeMap.end(); ++this_mitr) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyModeOnTexUnit(unit,this_mitr->first,new_value,ms); } else { // assume default of disabled. applyModeOnTexUnit(unit,this_mitr->first,ms.global_default_value,ms); } } } // iterator over the remaining incoming modes to apply any new mode. for(; ds_mitr!=modeList.end(); ++ds_mitr) { ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyModeOnTexUnit(unit,ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; } } inline void State::applyAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { StateSet::AttributeList::const_iterator ds_aitr=attributeList.begin(); AttributeMap::iterator this_aitr=attributeMap.begin(); while (this_aitr!=attributeMap.end() && ds_aitr!=attributeList.end()) { if (this_aitr->firstfirst) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } ++this_aitr; } else if (ds_aitr->firstfirst) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttribute(new_attr,as); as.changed = true; ++ds_aitr; } else { // this_mitr & ds_mitr refer to the same attribute, check the override // if any otherwise just apply the incoming attribute AttributeStack& as = this_aitr->second; if (!as.attributeVec.empty() && (as.attributeVec.back().second & StateAttribute::OVERRIDE) && !(ds_aitr->second.second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on attribute. if (as.changed) { as.changed = false; const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } } else { // no override on or no previous entry, therefore consider incoming attribute. const StateAttribute* new_attr = ds_aitr->second.first.get(); if (applyAttribute(new_attr,as)) { as.changed = true; } } ++this_aitr; ++ds_aitr; } } // iterator over the remaining state attributes to apply any previous changes. for(; this_aitr!=attributeMap.end(); ++this_aitr) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } } // iterator over the remaining incoming attribute to apply any new attribute. for(; ds_aitr!=attributeList.end(); ++ds_aitr) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttribute(new_attr,as); // will need to update this attribute on next apply so set it to changed. as.changed = true; } } inline void State::applyAttributeListOnTexUnit(unsigned int unit,AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { StateSet::AttributeList::const_iterator ds_aitr=attributeList.begin(); AttributeMap::iterator this_aitr=attributeMap.begin(); while (this_aitr!=attributeMap.end() && ds_aitr!=attributeList.end()) { if (this_aitr->firstfirst) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttributeOnTexUnit(unit,new_attr,as); } else { applyGlobalDefaultAttributeOnTexUnit(unit,as); } } ++this_aitr; } else if (ds_aitr->firstfirst) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttributeOnTexUnit(unit,new_attr,as); as.changed = true; ++ds_aitr; } else { // this_mitr & ds_mitr refer to the same attribute, check the override // if any otherwise just apply the incoming attribute AttributeStack& as = this_aitr->second; if (!as.attributeVec.empty() && (as.attributeVec.back().second & StateAttribute::OVERRIDE) && !(ds_aitr->second.second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on attribute. if (as.changed) { as.changed = false; const StateAttribute* new_attr = as.attributeVec.back().first; applyAttributeOnTexUnit(unit,new_attr,as); } } else { // no override on or no previous entry, therefore consider incoming attribute. const StateAttribute* new_attr = ds_aitr->second.first.get(); if (applyAttributeOnTexUnit(unit,new_attr,as)) { as.changed = true; } } ++this_aitr; ++ds_aitr; } } // iterator over the remaining state attributes to apply any previous changes. for(; this_aitr!=attributeMap.end(); ++this_aitr) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttributeOnTexUnit(unit,new_attr,as); } else { applyGlobalDefaultAttributeOnTexUnit(unit,as); } } } // iterator over the remaining incoming attribute to apply any new attribute. for(; ds_aitr!=attributeList.end(); ++ds_aitr) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttributeOnTexUnit(unit,new_attr,as); // will need to update this attribute on next apply so set it to changed. as.changed = true; } } inline void State::applyUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { if (!_lastAppliedProgramObject) return; StateSet::UniformList::const_iterator ds_aitr=uniformList.begin(); UniformMap::iterator this_aitr=uniformMap.begin(); while (this_aitr!=uniformMap.end() && ds_aitr!=uniformList.end()) { if (this_aitr->firstfirst) { // note attribute type = this_aitr->first UniformStack& as = this_aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } ++this_aitr; } else if (ds_aitr->firstfirst) { _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); ++ds_aitr; } else { // this_mitr & ds_mitr refer to the same attribute, check the override // if any otherwise just apply the incoming attribute UniformStack& as = this_aitr->second; if (!as.uniformVec.empty() && (as.uniformVec.back().second & StateAttribute::OVERRIDE) && !(ds_aitr->second.second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on uniform. _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } else { // no override on or no previous entry, therefore consider incoming attribute. _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); } ++this_aitr; ++ds_aitr; } } // iterator over the remaining state attributes to apply any previous changes. for(; this_aitr!=uniformMap.end(); ++this_aitr) { // note attribute type = this_aitr->first UniformStack& as = this_aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } } // iterator over the remaining incoming attribute to apply any new attribute. for(; ds_aitr!=uniformList.end(); ++ds_aitr) { _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); } } inline void State::applyModeMap(ModeMap& modeMap) { for(ModeMap::iterator mitr=modeMap.begin(); mitr!=modeMap.end(); ++mitr) { // note GLMode = mitr->first ModeStack& ms = mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(mitr->first,ms.global_default_value,ms); } } } } inline void State::applyModeMapOnTexUnit(unsigned int unit,ModeMap& modeMap) { for(ModeMap::iterator mitr=modeMap.begin(); mitr!=modeMap.end(); ++mitr) { // note GLMode = mitr->first ModeStack& ms = mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyModeOnTexUnit(unit,mitr->first,new_value,ms); } else { // assume default of disabled. applyModeOnTexUnit(unit,mitr->first,ms.global_default_value,ms); } } } } inline void State::applyAttributeMap(AttributeMap& attributeMap) { for(AttributeMap::iterator aitr=attributeMap.begin(); aitr!=attributeMap.end(); ++aitr) { AttributeStack& as = aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } } } inline void State::applyAttributeMapOnTexUnit(unsigned int unit,AttributeMap& attributeMap) { for(AttributeMap::iterator aitr=attributeMap.begin(); aitr!=attributeMap.end(); ++aitr) { AttributeStack& as = aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttributeOnTexUnit(unit,new_attr,as); } else { applyGlobalDefaultAttributeOnTexUnit(unit,as); } } } } inline void State::applyUniformMap(UniformMap& uniformMap) { if (!_lastAppliedProgramObject) return; for(UniformMap::iterator aitr=uniformMap.begin(); aitr!=uniformMap.end(); ++aitr) { UniformStack& as = aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } } } inline bool State::setActiveTextureUnit( unsigned int unit ) { if (unit!=_currentActiveTextureUnit) { if (_glActiveTexture && unit < (unsigned int)(maximum(_glMaxTextureCoords,_glMaxTextureUnits)) ) { _glActiveTexture(GL_TEXTURE0+unit); _currentActiveTextureUnit = unit; } else { return unit==0; } } return true; } } #endif