Dynamic images and image views
The GIL extension called dynamic_image
allows for images, image views
or any GIL constructs to have their parameters defined at run time.
The color space, channel depth, channel ordering, and interleaved/planar structure of an image are defined by the type of its template argument, which makes them compile-time bound. Often some of these parameters are available only at run time. Consider, for example, writing a module that opens the image at a given file path, rotates it and saves it back in its original color space and channel depth. How can we possibly write this using our generic image? What type is the image loading code supposed to return?
Here is an example:
#include <boost/gil/extension/dynamic_image/dynamic_image_all.hpp>
using namespace boost;
#define ASSERT_SAME(A,B) static_assert(is_same< A,B >::value, "")
// Define the set of allowed images
typedef mpl::vector<rgb8_image_t, cmyk16_planar_image_t> my_images_t;
// Create any_image class (or any_image_view) class
typedef any_image<my_images_t> my_any_image_t;
// Associated view types are available (equivalent to the ones in image_t)
typedef any_image_view<mpl::vector2<rgb8_view_t, cmyk16_planar_view_t > > AV;
ASSERT_SAME(my_any_image_t::view_t, AV);
typedef any_image_view<mpl::vector2<rgb8c_view_t, cmyk16c_planar_view_t> > CAV;
ASSERT_SAME(my_any_image_t::const_view_t, CAV);
ASSERT_SAME(my_any_image_t::const_view_t, my_any_image_t::view_t::const_t);
typedef any_image_view<mpl::vector2<rgb8_step_view_t, cmyk16_planar_step_view_t> > SAV;
ASSERT_SAME(typename dynamic_x_step_type<my_any_image_t::view_t>::type, SAV);
// Assign it a concrete image at run time:
my_any_image_t myImg = my_any_image_t(rgb8_image_t(100,100));
// Change it to another at run time. The previous image gets destroyed
myImg = cmyk16_planar_image_t(200,100);
// Assigning to an image not in the allowed set throws an exception
myImg = gray8_image_t(); // will throw std::bad_cast
The any_image
and any_image_view
subclass from GIL variant
class,
which breaks down the instantiated type into a non-templated underlying base
type and a unique instantiation type identifier. The underlying base instance
is represented as a block of bytes.
The block is large enough to hold the largest of the specified types.
GIL variant is similar to boost::variant
in spirit (hence we borrow the
name from there) but it differs in several ways from the current boost
implementation. Perhaps the biggest difference is that GIL variant always
takes a single argument, which is a model of MPL Random Access Sequence
enumerating the allowed types. Having a single interface allows GIL variant
to be used easier in generic code. Synopsis:
template <typename Types> // models MPL Random Access Container
class variant
{
... _bits;
std::size_t _index;
public:
typedef Types types_t;
variant();
variant(const variant& v);
virtual ~variant();
variant& operator=(const variant& v);
template <typename TS> friend bool operator==(const variant<TS>& x, const variant<TS>& y);
template <typename TS> friend bool operator!=(const variant<TS>& x, const variant<TS>& y);
// Construct/assign to type T. Throws std::bad_cast if T is not in Types
template <typename T> explicit variant(const T& obj);
template <typename T> variant& operator=(const T& obj);
// Construct/assign by swapping T with its current instance. Only possible if they are swappable
template <typename T> explicit variant(T& obj, bool do_swap);
template <typename T> void move_in(T& obj);
template <typename T> static bool has_type();
template <typename T> const T& _dynamic_cast() const;
template <typename T> T& _dynamic_cast();
template <typename T> bool current_type_is() const;
};
template <typename UOP, typename Types>
UOP::result_type apply_operation(variant<Types>& v, UOP op);
template <typename UOP, typename Types>
UOP::result_type apply_operation(const variant<Types>& v, UOP op);
template <typename BOP, typename Types1, typename Types2>
BOP::result_type apply_operation( variant<Types1>& v1, variant<Types2>& v2, UOP op);
template <typename BOP, typename Types1, typename Types2>
BOP::result_type apply_operation(const variant<Types1>& v1, variant<Types2>& v2, UOP op);
template <typename BOP, typename Types1, typename Types2>
BOP::result_type apply_operation(const variant<Types1>& v1, const variant<Types2>& v2, UOP op);
GIL any_image_view
and any_image
are subclasses of variant
:
template <typename ImageViewTypes>
class any_image_view : public variant<ImageViewTypes>
{
public:
typedef ... const_t; // immutable equivalent of this
typedef std::ptrdiff_t x_coord_t;
typedef std::ptrdiff_t y_coord_t;
typedef point<std::ptrdiff_t> point_t;
using size_type = std::size_t;
any_image_view();
template <typename T> explicit any_image_view(const T& obj);
any_image_view(const any_image_view& v);
template <typename T> any_image_view& operator=(const T& obj);
any_image_view& operator=(const any_image_view& v);
// parameters of the currently instantiated view
std::size_t num_channels() const;
point_t dimensions() const;
size_type size() const;
x_coord_t width() const;
y_coord_t height() const;
};
template <typename ImageTypes>
class any_image : public variant<ImageTypes>
{
typedef variant<ImageTypes> parent_t;
public:
typedef ... const_view_t;
typedef ... view_t;
typedef std::ptrdiff_t x_coord_t;
typedef std::ptrdiff_t y_coord_t;
typedef point<std::ptrdiff_t> point_t;
any_image();
template <typename T> explicit any_image(const T& obj);
template <typename T> explicit any_image(T& obj, bool do_swap);
any_image(const any_image& v);
template <typename T> any_image& operator=(const T& obj);
any_image& operator=(const any_image& v);
void recreate(const point_t& dims, unsigned alignment=1);
void recreate(x_coord_t width, y_coord_t height, unsigned alignment=1);
std::size_t num_channels() const;
point_t dimensions() const;
x_coord_t width() const;
y_coord_t height() const;
};
Operations are invoked on variants via apply_operation
passing a
function object to perform the operation. The code for every allowed
type in the variant is instantiated and the appropriate instantiation
is selected via a switch statement. Since image view algorithms
typically have time complexity at least linear on the number of
pixels, the single switch statement of image view variant adds
practically no measurable performance overhead compared to templated
image views.
Variants behave like the underlying type. Their copy constructor will
invoke the copy constructor of the underlying instance. Equality
operator will check if the two instances are of the same type and then
invoke their operator==
, etc. The default constructor of a variant
will default-construct the first type. That means that
any_image_view
has shallow default-constructor, copy-constructor,
assignment and equality comparison, whereas any_image
has deep
ones.
It is important to note that even though any_image_view
and
any_image
resemble the static image_view
and image
, they
do not model the full requirements of ImageViewConcept
and
ImageConcept
. In particular they don’t provide access to the
pixels. There is no “any_pixel” or “any_pixel_iterator” in GIL. Such
constructs could be provided via the variant
mechanism, but doing
so would result in inefficient algorithms, since the type resolution
would have to be performed per pixel. Image-level algorithms should be
implemented via apply_operation
. That said, many common operations
are shared between the static and dynamic types. In addition, all of
the image view transformations and many STL-like image view algorithms
have overloads operating on any_image_view
, as illustrated with
copy_pixels
:
rgb8_view_t v1(...); // concrete image view
bgr8_view_t v2(...); // concrete image view compatible with v1 and of the same size
any_image_view<Types> av(...); // run-time specified image view
// Copies the pixels from v1 into v2.
// If the pixels are incompatible triggers compile error
copy_pixels(v1,v2);
// The source or destination (or both) may be run-time instantiated.
// If they happen to be incompatible, throws std::bad_cast
copy_pixels(v1, av);
copy_pixels(av, v2);
copy_pixels(av, av);
By having algorithm overloads supporting dynamic constructs, we create a base upon which it is possible to write algorithms that can work with either compile-time or runtime images or views. The following code, for example, uses the GIL I/O extension to turn an image on disk upside down:
#include <boost\gil\extension\io\jpeg_dynamic_io.hpp>
template <typename Image> // Could be rgb8_image_t or any_image<...>
void save_180rot(const std::string& file_name)
{
Image img;
jpeg_read_image(file_name, img);
jpeg_write_view(file_name, rotated180_view(view(img)));
}
It can be instantiated with either a compile-time or a runtime image
because all functions it uses have overloads taking runtime
constructs. For example, here is how rotated180_view
is
implemented:
// implementation using templated view
template <typename View>
typename dynamic_xy_step_type<View>::type rotated180_view(const View& src) { ... }
namespace detail
{
// the function, wrapped inside a function object
template <typename Result> struct rotated180_view_fn
{
typedef Result result_type;
template <typename View> result_type operator()(const View& src) const
{
return result_type(rotated180_view(src));
}
};
}
// overloading of the function using variant. Takes and returns run-time bound view.
// The returned view has a dynamic step
template <typename ViewTypes> inline // Models MPL Random Access Container of models of ImageViewConcept
typename dynamic_xy_step_type<any_image_view<ViewTypes> >::type rotated180_view(const any_image_view<ViewTypes>& src)
{
return apply_operation(src,detail::rotated180_view_fn<typename dynamic_xy_step_type<any_image_view<ViewTypes> >::type>());
}
Variants should be used with caution (especially algorithms that take
more than one variant) because they instantiate the algorithm for
every possible model that the variant can take. This can take a toll
on compile time and executable size. Despite these limitations,
variant
is a powerful technique that allows us to combine the
speed of compile-time resolution with the flexibility of run-time
resolution. It allows us to treat images of different parameters
uniformly as a collection and store them in the same container.