8 #ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP 9 #define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP 13 #include <type_traits> 19 #include <boost/assert.hpp> 21 #include <boost/gil/image.hpp> 22 #include <boost/gil/extension/numeric/kernel.hpp> 23 #include <boost/gil/extension/numeric/convolve.hpp> 24 #include <boost/gil/image_processing/numeric.hpp> 26 namespace boost {
namespace gil {
32 typename SourceChannelT,
33 typename ResultChannelT,
38 void threshold_impl(SrcView
const& src_view, DstView
const& dst_view, Operator
const& threshold_op)
40 gil_function_requires<ImageViewConcept<SrcView>>();
41 gil_function_requires<MutableImageViewConcept<DstView>>();
42 static_assert(color_spaces_are_compatible
44 typename color_space_type<SrcView>::type,
45 typename color_space_type<DstView>::type
46 >::value,
"Source and destination views must have pixels with the same color space");
49 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
51 typename SrcView::x_iterator src_it = src_view.row_begin(y);
52 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
54 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
56 static_transform(src_it[x], dst_it[x], threshold_op);
90 enum class threshold_adaptive_method
107 template <
typename SrcView,
typename DstView>
109 SrcView
const& src_view,
110 DstView
const& dst_view,
122 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
123 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
124 return px > threshold_value ? max_value : 0;
129 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
130 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
131 return px > threshold_value ? 0 : max_value;
146 template <
typename SrcView,
typename DstView>
148 SrcView
const& src_view,
149 DstView
const& dst_view,
157 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
158 threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
172 template <
typename SrcView,
typename DstView>
174 SrcView
const& src_view,
175 DstView
const& dst_view,
185 std::function<result_channel_t(source_channel_t)> threshold_logic;
191 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
192 [threshold_value](source_channel_t px) -> result_channel_t {
193 return px > threshold_value ? threshold_value : px;
198 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
199 [threshold_value](source_channel_t px) -> result_channel_t {
200 return px > threshold_value ? px : threshold_value;
208 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
209 [threshold_value](source_channel_t px) -> result_channel_t {
210 return px > threshold_value ? px : 0;
215 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
216 [threshold_value](source_channel_t px) -> result_channel_t {
217 return px > threshold_value ? 0 : px;
225 template <
typename SrcView,
typename DstView>
226 void otsu_impl(SrcView
const& src_view, DstView
const& dst_view,
threshold_direction direction)
229 using source_channel_t =
typename channel_type<SrcView>::type;
231 std::array<std::size_t, 256> histogram{};
234 auto min = (std::numeric_limits<source_channel_t>::max)(),
235 max = (std::numeric_limits<source_channel_t>::min)();
237 if (
sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
240 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
242 typename SrcView::x_iterator src_it = src_view.row_begin(y);
243 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
245 if (src_it[x] < min) min = src_it[x];
246 if (src_it[x] > min) min = src_it[x];
251 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
253 typename SrcView::x_iterator src_it = src_view.row_begin(y);
255 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
257 histogram[((src_it[x] - min) * 255) / (max - min)]++;
264 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
266 typename SrcView::x_iterator src_it = src_view.row_begin(y);
268 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
270 histogram[src_it[x]]++;
286 std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
287 std::ptrdiff_t sum_total = 0, sum_back = 0;
288 std::size_t weight_back = 0, weight_fore = 0,
threshold = 0;
289 double var_max = 0, mean_back, mean_fore, var_intra_class;
291 for (std::size_t t = 0; t < 256; t++)
293 sum_total += t * histogram[t];
296 for (
int t = 0; t < 256; t++)
298 weight_back += histogram[t];
299 if (weight_back == 0)
continue;
301 weight_fore = total_pixel - weight_back;
302 if (weight_fore == 0)
break;
304 sum_back += t * histogram[t];
306 mean_back = sum_back / weight_back;
307 mean_fore = (sum_total - sum_back) / weight_fore;
310 var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
313 if (var_intra_class > var_max) {
314 var_max = var_intra_class;
318 if (
sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
328 template <
typename SrcView,
typename DstView>
329 void threshold_optimal
331 SrcView
const& src_view,
332 DstView
const& dst_view,
339 for (std::size_t i = 0; i < src_view.num_channels(); i++)
342 (nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
351 typename SourceChannelT,
352 typename ResultChannelT,
359 SrcView
const& src_view,
360 SrcView
const& convolved_view,
361 DstView
const& dst_view,
362 Operator
const& threshold_op
366 gil_function_requires<ImageViewConcept<SrcView>>();
367 gil_function_requires<MutableImageViewConcept<DstView>>();
369 static_assert(color_spaces_are_compatible
371 typename color_space_type<SrcView>::type,
372 typename color_space_type<DstView>::type
373 >::value,
"Source and destination views must have pixels with the same color space");
376 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
378 typename SrcView::x_iterator src_it = src_view.row_begin(y);
379 typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
380 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
382 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
384 static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
390 template <
typename SrcView,
typename DstView>
391 void threshold_adaptive
393 SrcView
const& src_view,
394 DstView
const& dst_view,
395 typename channel_type<DstView>::type max_value,
396 std::size_t kernel_size,
397 threshold_adaptive_method method = threshold_adaptive_method::mean,
399 typename channel_type<DstView>::type constant = 0
402 BOOST_ASSERT_MSG((kernel_size % 2 != 0),
"Kernel size must be an odd number");
404 typedef typename channel_type<SrcView>::type source_channel_t;
405 typedef typename channel_type<DstView>::type result_channel_t;
407 image<typename SrcView::value_type> temp_img(src_view.width(), src_view.height());
408 typename image<typename SrcView::value_type>::view_t temp_view =
view(temp_img);
409 SrcView temp_conv(temp_view);
411 if (method == threshold_adaptive_method::mean)
413 std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
414 kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
418 pixel<float, typename SrcView::value_type::layout_t>
419 >(src_view, kernel, temp_view);
421 else if (method == threshold_adaptive_method::gaussian)
424 convolve_2d(src_view, kernel, temp_view);
429 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
430 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
431 {
return px > (
threshold - constant) ? max_value : 0; });
435 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
436 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
437 {
return px > (
threshold - constant) ? 0 : max_value; });
441 template <
typename SrcView,
typename DstView>
442 void threshold_adaptive
444 SrcView
const& src_view,
445 DstView
const& dst_view,
446 std::size_t kernel_size,
447 threshold_adaptive_method method = threshold_adaptive_method::mean,
453 typedef typename channel_type<DstView>::type result_channel_t;
455 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
457 threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
464 #endif //BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP void threshold_binary(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_direction direction=threshold_direction::regular)
Applies fixed threshold to each pixel of image view. Performs image binarization by thresholding chan...
Definition: threshold.hpp:147
threshold_truncate_mode
TODO.
Definition: threshold.hpp:84
threshold_direction
Definition: threshold.hpp:69
threshold_optimal_value
Method of optimal threshold value calculation.
Definition: threshold.hpp:77
Consider values less than or equal to threshold value.
Definition: color_convert.hpp:31
const image< Pixel, IsPlanar, Alloc >::view_t & view(image< Pixel, IsPlanar, Alloc > &img)
Returns the non-constant-pixel view of an image.
Definition: image.hpp:535
void threshold_truncate(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_truncate_mode mode=threshold_truncate_mode::threshold, threshold_direction direction=threshold_direction::regular)
Applies truncating threshold to each pixel of image view. Takes an image view and performs truncating...
Definition: threshold.hpp:173
Consider values greater than threshold value.
detail::kernel_2d< T, Allocator > generate_gaussian_kernel(std::size_t side_length, double sigma)
Generate Gaussian kernelFills supplied view with values taken from Gaussian distribution....
Definition: numeric.hpp:129