Efficient algorithms for membership testing, random access, and retrieval by key

Note
Being late to the metaprogramming party, I make no claim of having invented the techniques in this article. A quick look at the implementations of, for example, Louis Dionne’s mpl11 and Eric Niebler’s meta, shows that most of these tricks are already known. Dave Abrahams has experimented along these lines in 2012. The original inventor of the multiple inheritance trick and the void* arguments trick is probably Richard Smith, who has posted two examples in response to a Clang bug report.

Vectors, sets, and maps

Last time, I outlined a style of metaprogramming that operated on type lists — variadic class templates:

template<class... T> struct mp_list {};

Classic Lisp uses lists as its only data structure, but operating on a list is usually linear in the number of its elements.

In addition to list, the STL has vector, set, and map. vector supports random access by index; set has efficient test for membership; map associates keys with values and has efficient lookup based on key.

Instead of introducing separate data structure such as mp_vector, mp_set, mp_map, we’ll keep our data in a list form, and attempt to provide efficient algorithms for random access, membership testing, and lookup.

mp_contains

Let’s starts with sets. A set is just a list with unique elements. To obtain a set from an arbitrary list, we’ll need an algorithm that removes the duplicates. Let’s call it mp_unique<L>:

// mp_if

template<bool C, class T, class E> struct mp_if_c_impl;

template<class T, class E> struct mp_if_c_impl<true, T, E>
{
    using type = T;
};

template<class T, class E> struct mp_if_c_impl<false, T, E>
{
    using type = E;
};

template<bool C, class T, class E>
    using mp_if_c = typename mp_if_c_impl<C, T, E>::type;

template<class C, class T, class E>
    using mp_if = typename mp_if_c_impl<C::value != 0, T, E>::type;

// mp_unique

template<class L> struct mp_unique_impl;

template<class L> using mp_unique = typename mp_unique_impl<L>::type;

template<template<class...> class L> struct mp_unique_impl<L<>>
{
    using type = L<>;
};

template<template<class...> class L, class T1, class... T>
    struct mp_unique_impl<L<T1, T...>>
{
    using _rest = mp_unique<L<T...>>;
    using type = mp_if<mp_contains<_rest, T1>, _rest, mp_push_front<_rest, T1>>;
};

For membership testing, we’ve introduced an algorithm mp_contains<L, V> that returns true when L contains V. The straightforward recursive implementation of mp_contains is:

template<class L, class V> struct mp_contains_impl;

template<class L, class V> using mp_contains = typename mp_contains_impl<L, V>::type;

template<template<class...> class L, class V> struct mp_contains_impl<L<>, V>
{
    using type = std::false_type;
};

template<template<class...> class L, class... T, class V>
    struct mp_contains_impl<L<V, T...>, V>
{
    using type = std::true_type;
};

template<template<class...> class L, class T1, class... T, class V>
    struct mp_contains_impl<L<T1, T...>, V>: mp_contains_impl<L<T...>, V>
{
};

Note that mp_unique<L> makes N calls to mp_contains, where N is the length of the list L. This means that mp_contains needs to be as fast as possible, which the above implementation, well, isn’t.

Here are the compile times in seconds for invoking mp_unique on a list with N (distinct) elements:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

2.1

DNF

clang++ 3.5.1, recursive

0.9

4.5

13.2

30.2

DNF

g++ 4.9.2, recursive

0.7

3.6

10.4

23.2

DNF

(Tests done under Windows/Cygwin. All compilers are 32 bit. No optimizations. DNF stands for "did not finish", which usually means that the compiler ran out of heap space or crashed.)

We clearly need a better alternative.

I ended the previous article with an implementation of mp_contains that relied on mp_count, which in turn relied on mp_plus. Let’s see how it fares:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, mp_count/mp_plus

1.1

9.8

50.5

DNF

clang++ 3.5.1, mp_count/mp_plus

0.5

1.4

3.1

6.1

DNF

g++ 4.9.2, mp_count/mp_plus

0.5

1.3

2.9

5.8

9.7

15.6

22.4

32.3

Not that bad, at least if your compiler happens to be g++. Still, there ought to be room for improvement here.

To do better, we have to somehow leverage the language features, such as pack expansion, to do more of the work for us. For inspiration, let’s turn to section 14.5.3 paragraph 4 of the C++11 standard, which explains that pack expansions can occur in the following contexts:

  • In a function parameter pack (8.3.5); the pattern is the parameter-declaration without the ellipsis.

  • In a template parameter pack that is a pack expansion (14.1):

  • In an initializer-list (8.5); the pattern is an initializer-clause.

  • In a base-specifier-list (Clause 10); the pattern is a base-specifier.

  • In a mem-initializer-list (12.6.2); the pattern is a mem-initializer.

  • In a template-argument-list (14.3); the pattern is a template-argument.

  • In a dynamic-exception-specification (15.4); the pattern is a type-id.

  • In an attribute-list (7.6.1); the pattern is an attribute.

  • In an alignment-specifier (7.6.2); the pattern is the alignment-specifier without the ellipsis.

  • In a capture-list (5.1.2); the pattern is a capture.

  • In a sizeof... expression (5.3.3); the pattern is an identifier.

The emphasis is mine and indicates possible leads.

Our first option is to expand the parameter pack into arguments for a function call. Since we’re interested in operations that occur at compile time, calling a function may not appear useful; but C++11 functions can be constexpr, and constexpr function "calls" do occur at compile time.

Recall our mp_count:

template<class L, class V> struct mp_count_impl;

template<template<class...> class L, class... T, class V>
    struct mp_count_impl<L<T...>, V>
{
    using type = mp_plus<std::is_same<T, V>...>;
};

template<class L, class V> using mp_count = typename mp_count_impl<L, V>::type;

Instead of using the template alias mp_plus to sum the is_same expressions, we can use a constexpr function:

constexpr std::size_t cx_plus()
{
    return 0;
}

template<class T1, class... T> constexpr std::size_t cx_plus(T1 t1, T... t)
{
    return t1 + cx_plus(t...);
}

// mp_size_t

template<std::size_t N> using mp_size_t = std::integral_constant<std::size_t, N>;

// mp_count

template<class L, class V> struct mp_count_impl;

template<template<class...> class L, class... T, class V>
    struct mp_count_impl<L<T...>, V>
{
    using type = mp_size_t<cx_plus(std::is_same<T, V>::value...)>;
};

template<class L, class V> using mp_count = typename mp_count_impl<L, V>::type;

with the following results:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

clang++ 3.5.1, mp_count/cx_plus

0.4

1.1

2.5

5.0

DNF

g++ 4.9.2, mp_count/cx_plus

0.4

0.9

1.7

2.9

4.7

6.7

9.2

11.8

We’ve improved the times, but lost VC++ 2013 due to its not implementing constexpr.

Let’s try pack expansion into an initializer-list. Instead of passing the is_same expressions to a function, we can build a constant array out of them, then sum the array with a constexpr function:

constexpr std::size_t cx_plus2(bool const * first, bool const * last)
{
    return first == last? 0: *first + cx_plus2(first + 1, last);
}

// mp_count

template<class L, class V> struct mp_count_impl;

template<template<class...> class L, class... T, class V>
    struct mp_count_impl<L<T...>, V>
{
    static constexpr bool _v[] = { std::is_same<T, V>::value... };
    using type = mp_size_t<cx_plus2(_v, _v + sizeof...(T))>;
};

template<class L, class V> using mp_count = typename mp_count_impl<L, V>::type;

This is a neat trick, but is it fast?

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

clang++ 3.5.1, mp_count/cx_plus2

0.4

0.9

1.8

DNF

g++ 4.9.2, mp_count/cx_plus2

0.4

0.9

1.9

3.4

5.4

7.8

11.0

14.7

That’s a bit disappointing. Let’s see what can we do with expanding a parameter pack into a base-specifier-list. We would be able to define a class that derives from every element of the pack:

struct U: T... {};

We can then use std::is_base_of<V, U> to test whether a type V is a base of U, that is, whether it’s one of the elements of the parameter pack. Which is exactly what we need.

Arbitrary types such as void, int, or void(int) can’t be used as base classes, but we’ll wrap the types in an empty class template, which we’ll call mp_identity.

template<class T> struct mp_identity
{
    using type = T;
};

template<class L, class V> struct mp_contains_impl;

template<class L, class V> using mp_contains = typename mp_contains_impl<L, V>::type;

template<template<class...> class L, class... T, class V>
    struct mp_contains_impl<L<T...>, V>
{
    struct U: mp_identity<T>... {};
    using type = std::is_base_of<mp_identity<V>, U>;
};

Performance?

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, is_base_of

0.3

0.6

1.3

2.5

DNF

clang++ 3.5.1, is_base_of

0.3

0.4

0.6

0.8

DNF

g++ 4.9.2, is_base_of

0.3

0.4

0.6

0.9

1.3

1.7

2.3

3.0

This implementation is a clear winner.

In fairness, we ought to note that the first four implementations of mp_contains do not rely on the list elements being unique. This makes mp_contains an algorithm that supports arbitrary lists, not just sets.

The is_base_of implementation, however, does not support lists that contain duplicates, because it’s not possible to inherit directly from the same type twice. So it does not implement the general mp_contains, but something that should probably be named mp_set_contains.

We can avoid the "no duplicates" requirement by modifying the implementation to inherit from mp_identity<T> indirectly, via an intermediate base class:

// indirect_inherit

template<std::size_t I, class T> struct inherit_second: T {};

template<class L, class S> struct indirect_inherit_impl;

template<template<class...> class L, class... T, std::size_t... J>
    struct indirect_inherit_impl<L<T...>, integer_sequence<std::size_t, J...>>:
        inherit_second<J, mp_identity<T>>... {};

template<class L> using indirect_inherit =
    indirect_inherit_impl<L, make_index_sequence<mp_size<L>::value>>;

// mp_contains

template<class L, class V> struct mp_contains_impl
{
    using U = indirect_inherit<L>;
    using type = std::is_base_of<mp_identity<V>, U>;
};

template<class L, class V> using mp_contains = typename mp_contains_impl<L, V>::type;

This, however, pretty much nullifies the spectacular performance gains we’ve observed with the original is_base_of-based implementation:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

2.1

DNF

VC++ 2013, mp_count/mp_plus

1.1

9.8

50.5

DNF

VC++ 2013, is_base_of

0.3

0.6

1.3

2.5

DNF

VC++ 2013, is_base_of/indirect

1.0

9.3

49.5

153.8

DNF

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

clang++ 3.5.1, recursive

0.9

4.5

13.2

30.2

DNF

clang++ 3.5.1, mp_count/mp_plus

0.5

1.4

3.1

6.1

DNF

clang++ 3.5.1, mp_count/cx_plus

0.4

1.1

2.5

5.0

DNF

clang++ 3.5.1, mp_count/cx_plus2

0.4

0.9

1.8

DNF

clang++ 3.5.1, is_base_of

0.3

0.4

0.6

0.8

DNF

clang++ 3.5.1, is_base_of/indirect

0.4

0.9

1.6

2.5

DNF

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

g++ 4.9.2, recursive

0.7

3.6

10.4

23.2

DNF

g++ 4.9.2, mp_count/mp_plus

0.5

1.3

2.9

5.8

9.7

15.6

22.4

32.3

g++ 4.9.2, mp_count/cx_plus

0.4

0.9

1.7

2.9

4.7

6.7

9.2

11.8

g++ 4.9.2, mp_count/cx_plus2

0.4

0.9

1.9

3.4

5.4

7.8

11.0

14.7

g++ 4.9.2, is_base_of

0.3

0.4

0.6

0.9

1.3

1.7

2.3

3.0

g++ 4.9.2, is_base_of/indirect

0.5

1.1

2.3

4.0

6.6

9.8

13.6

18.2

mp_map_find

A map, in the STL sense, is a data structure that associates keys with values and can efficiently retrieve, given a key, its associated value. For our purposes, a map will be any list of lists for which the inner lists have at least one element, the key; the rest of the elements we’ll consider to be the associated value. For example, the list

[[A, B], [C, D, E], [F], [G, H]]

is a map with keys A, C, F, and G, with associated values [B], [D, E], [], and [H], respectively. We’ll require unique keys, for reasons that’ll become evident later.

I’ll show two other examples of maps, this time using real C++ code:

using Map = mp_list<mp_list<int, int*>, mp_list<void, void*>, mp_list<char, char*>>;
using Map2 = std::tuple<std::pair<int, int[2]>, std::pair<char, char[2]>>;

The Lisp name of the algorithm that performs retrieval based on key is ASSOC, but I’ll call it mp_map_find. mp_map_find<M, K> returns the element of M whose first element is K. For example, mp_map_find<Map2, int> would return std::pair<int, int[2]>. If there’s no such key, it returns void.

There’s almost no need to implement and benchmark the recursive version of mp_map_find — we can be pretty sure it will perform horribly. Still,

template<class M, class K> struct mp_map_find_impl;

template<class M, class K> using mp_map_find = typename mp_map_find_impl<M, K>::type;

template<template<class...> class M, class K> struct mp_map_find_impl<M<>, K>
{
    using type = void;
};

template<template<class...> class M, class T1, class... T, class K>
    struct mp_map_find_impl<M<T1, T...>, K>
{
    using type = mp_if<std::is_same<mp_front<T1>, K>, T1, mp_map_find<M<T...>, K>>;
};

The compile time, in seconds, for N lookups into a map of size N, is as follows:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

38.2

DNF

clang++ 3.5.1, recursive

2.5

13.7

DNF

g++ 4.9.2, recursive

1.9

10.2

28.8

DNF

I told you there was no point.

But, I hear some of you say, you’re evaluating the else branch even if the condition is true, and that’s horribly inefficient!

Well, this would only improve the performance by a factor of approximately two on average, and only if the element is present, but fine, let’s try it. The element happens to be present in the benchmark, so let’s see.

// mp_eval_if

template<bool C, class T, template<class...> class E, class... A>
    struct mp_eval_if_c_impl;

template<class T, template<class...> class E, class... A>
    struct mp_eval_if_c_impl<true, T, E, A...>
{
    using type = T;
};

template<class T, template<class...> class E, class... A>
    struct mp_eval_if_c_impl<false, T, E, A...>
{
    using type = E<A...>;
};

template<bool C, class T, template<class...> class E, class... A>
    using mp_eval_if_c = typename mp_eval_if_c_impl<C, T, E, A...>::type;

template<class C, class T, template<class...> class E, class... A>
    using mp_eval_if = typename mp_eval_if_c_impl<C::value != 0, T, E, A...>::type;

// mp_map_find

template<class M, class K> struct mp_map_find_impl;

template<class M, class K> using mp_map_find = typename mp_map_find_impl<M, K>::type;

template<template<class...> class M, class K> struct mp_map_find_impl<M<>, K>
{
    using type = void;
};

template<template<class...> class M, class T1, class... T, class K>
    struct mp_map_find_impl<M<T1, T...>, K>
{
    using type = mp_eval_if<std::is_same<mp_front<T1>, K>, T1, mp_map_find, M<T...>, K>;
};

There you go:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

15.6

DNF

clang++ 3.5.1, recursive

1.8

9.5

DNF

g++ 4.9.2, recursive

1.4

7.0

19.7

DNF

I told you there was no point.

Point or no, to establish that the recursive implementation is inefficient is not the same as to come up with an efficient one. There are two things that make the mp_contains techniques inapplicable to our present case: first, mp_contains only had to return true or false, whereas mp_map_find returns a type, and second, in mp_contains we knew the exact type of the element for which we were looking, whereas here, we only know its mp_front.

Fortunately, there does exist a language feature that can solve both: C++ can deduce the template parameters of base classes when passed a derived class. In this example,

struct K1 {};
struct V1 {};

struct X: std::pair<K1, V1> {};

template<class A, class B> void f(std::pair<A, B> const & p);

int main()
{
    f(X());
}

the call to f(X()) deduces A as K1 and B as V1. If we have more than one std::pair base class, we can fix A to be K1:

struct K1 {};
struct V1 {};

struct K2 {};
struct V2 {};

struct X: std::pair<K1, V1>, std::pair<K2, V2> {};

template<class B> void f(std::pair<K1, B> const & p);

int main()
{
    f(X());
}

and B will be deduced as V1.

We can retrieve the results of the deduction by returning the type we want:

template<class B> std::pair<K1, B> f(std::pair<K1, B> const & p);

and then using decltype(f(X())) to obtain this return type.

What if X doesn’t have a base of type std::pair<K1, B>? The deduction will fail and we’ll get an error that f(X()) cannot be called. To avoid it, we can add an overload of f that takes anything and returns void. But in this case, what will happen if X has two bases of the form that match the first f overload, such as for example std::pair<K1, Y> and std::pair<K1, Z>?

The deduction will fail, the second overload will again be chosen and we’ll get void. This is why we require maps to have unique keys.

Here’s an implementation of mp_map_find based on this technique:

template<class M, class K> struct mp_map_find_impl;

template<class M, class K>
    using mp_map_find = typename mp_map_find_impl<M, K>::type;

template<template<class...> class M, class... T, class K>
    struct mp_map_find_impl<M<T...>, K>
{
    struct U: mp_identity<T>... {};

    template<template<class...> class L, class... U>
        static mp_identity<L<K, U...>>
        f( mp_identity<L<K, U...>>* );

    static mp_identity<void> f( ... );

    using V = decltype( f((U*)0) );

    using type = typename V::type;
};

and its corresponding compile times:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, deduction

0.3

0.7

1.8

3.6

6.4

10.4

16.2

DNF

clang++ 3.5.1, deduction

0.3

0.4

0.6

0.9

1.2

1.6

2.2

2.7

g++ 4.9.2, deduction

0.3

0.5

0.9

1.6

2.3

3.4

4.7

6.3

This looks ready to ship.

The implementation contains one inefficiency though. If we evaluate mp_map_find<M, K1>, then mp_map_find<M, K2>, the two nested U types are the same as they only depend on M, but the compiler doesn’t know that and will instantiate each one separately. We should move this type outside mp_map_find_impl so that it can be reused:

template<class... T> struct mp_inherit: T... {};

template<class M, class K> struct mp_map_find_impl;

template<class M, class K>
    using mp_map_find = typename mp_map_find_impl<M, K>::type;

template<template<class...> class M, class... T, class K>
    struct mp_map_find_impl<M<T...>, K>
{
    using U = mp_inherit<mp_identity<T>...>;

    template<template<class...> class L, class... U>
        static mp_identity<L<K, U...>>
        f( mp_identity<L<K, U...>>* );

    static mp_identity<void> f( ... );

    using V = decltype( f((U*)0) );

    using type = typename V::type;
};

(This same optimization, by the way, applies to our is_base_of implementation of mp_contains.)

The improvement in compile times on our benchmark is measurable:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, deduction+mp_inherit

0.3

0.6

1.4

2.6

4.5

7.1

10.7

DNF

clang++ 3.5.1, deduction+mp_inherit

0.3

0.4

0.6

0.8

1.0

1.4

1.8

2.2

g++ 4.9.2, deduction+mp_inherit

0.3

0.4

0.6

0.9

1.3

1.8

2.3

2.9

mp_at

With sets and maps covered, it’s time to tackle vectors. Vectors for us are just lists, to which we’ll need to add the ability to efficiently access an element based on its index. The customary name for this accessor is mp_at<L, I>, where L is a list and I is an integral_constant that represents the index. We’ll also follow the Boost.MPL convention and add mp_at_c<L, I>, where I is the index of type size_t.

The recursive implementation of mp_at is:

template<class L, std::size_t I> struct mp_at_c_impl;

template<class L, std::size_t I> using mp_at_c = typename mp_at_c_impl<L, I>::type;

template<class L, class I> using mp_at = typename mp_at_c_impl<L, I::value>::type;

template<template<class...> class L, class T1, class... T>
    struct mp_at_c_impl<L<T1, T...>, 0>
{
    using type = T1;
};

template<template<class...> class L, class T1, class... T, std::size_t I>
    struct mp_at_c_impl<L<T1, T...>, I>
{
    using type = mp_at_c<L<T...>, I-1>;
};

and the compile times for making N calls to mp_at with a list of size N as the first argument are:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

3.6

DNF

clang++ 3.5.1, recursive

1.0

5.1

15.3

DNF

g++ 4.9.2, recursive

0.9

4.7

14.2

32.4

DNF

To improve upon this appalling result, we’ll again exploit pack expansion into a function call, but in a novel way. Let’s suppose that we need to access the fourth element (I = 3). We’ll generate the function signature

template<class W> W f( void*, void*, void*, W*, ... );

and then, given a list L<T1, T2, T3, T4, T5, T6, T7>, we’ll evaluate the expression

decltype( f( (T1*)0, (T2*)0, (T3*)0, (T4*)0, (T5*)0, (T6*)0, (T7*)0 ) )

The three void* parameters will eat the first three elements, W will be deduced as the fourth, and the ellipsis will take care of the rest.

A working implementation based on this technique is shown below:

// mp_repeat_c

template<std::size_t N, class... T> struct mp_repeat_c_impl
{
    using _l1 = typename mp_repeat_c_impl<N/2, T...>::type;
    using _l2 = typename mp_repeat_c_impl<N%2, T...>::type;

    using type = mp_append<_l1, _l1, _l2>;
};

template<class... T> struct mp_repeat_c_impl<0, T...>
{
    using type = mp_list<>;
};

template<class... T> struct mp_repeat_c_impl<1, T...>
{
    using type = mp_list<T...>;
};

template<std::size_t N, class... T> using mp_repeat_c =
    typename mp_repeat_c_impl<N, T...>::type;

// mp_at

template<class L, class L2> struct mp_at_c_impl;

template<template<class...> class L, class... T,
    template<class...> class L2, class... U>
    struct mp_at_c_impl<L<T...>, L2<U...>>
{
    template<class W> static W f( U*..., W*, ... );

    using R = decltype( f( (mp_identity<T>*)0 ... ) );

    using type = typename R::type;
};

template<class L, std::size_t I> using mp_at_c =
    typename mp_at_c_impl<L, mp_repeat_c<I, void>>::type;

template<class L, class I> using mp_at = mp_at_c<L, I::value>;

and the compile times in the following table show it to be good enough for most practical purposes.

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, void*

0.4

1.1

2.4

4.7

DNF

clang++ 3.5.1, void*

0.4

0.7

1.2

1.9

2.7

3.8

5.0

6.6

g++ 4.9.2, void*

0.3

0.5

0.9

1.3

2.1

3.0

4.2

5.5

Are we done with mp_at, then?

Let’s try something else — transform the input list [T1, T2, T3] into a map [[0, T1], [1, T2], [2, T3]], then use mp_map_find for the lookup:

// mp_map_from_list

template<class L, class S> struct mp_map_from_list_impl;

template<template<class...> class L, class... T, std::size_t... J>
    struct mp_map_from_list_impl<L<T...>, integer_sequence<std::size_t, J...>>
{
    using type = mp_list<mp_list<mp_size_t<J>, T>...>;
};

template<class L> using mp_map_from_list = typename mp_map_from_list_impl<L,
    make_index_sequence<mp_size<L>::value>>::type;

// mp_at

template<class L, std::size_t I> struct mp_at_c_impl
{
    using map = mp_map_from_list<L>;
    using type = mp_second<mp_map_find<map, mp_size_t<I>>>;
};

template<class L, std::size_t I> using mp_at_c = typename mp_at_c_impl<L, I>::type;

template<class L, class I> using mp_at = typename mp_at_c_impl<L, I::value>::type;

At first sight, this looks ridiculous, but metaprogramming has its own rules. Let’s measure:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, map

0.3

0.7

1.5

2.9

5.0

7.8

11.9

DNF

clang++ 3.5.1, map

0.3

0.4

0.6

0.8

1.1

1.5

1.8

2.3

g++ 4.9.2, map

0.3

0.4

0.7

1.0

1.4

1.9

2.5

3.2

Surprise, this is the best implementation.

mp_drop

It turned out that we didn’t need the void* trick for mp_at, but I’ll show an example where we do: mp_drop. mp_drop<L, N> returns the list L without its first N elements; or, in other words, it drops the first N elements (presumably on the cutting room floor) and returns what’s left.

To implement mp_drop, we just need to change

template<class W> W f( void*, void*, void*, W*, ... );

from above to return the rest of the elements, rather than just one:

template<class... W> mp_list<W> f( void*, void*, void*, W*... );

Adding the necessary mp_identity seasoning produces the following working implementation:

template<class L, class L2> struct mp_drop_c_impl;

template<template<class...> class L, class... T,
    template<class...> class L2, class... U>
    struct mp_drop_c_impl<L<T...>, L2<U...>>
{
    template<class... W> static mp_identity<L<W...>> f( U*..., mp_identity<W>*... );

    using R = decltype( f( (mp_identity<T>*)0 ... ) );

    using type = typename R::type;
};

template<class L, std::size_t N> using mp_drop_c =
    typename mp_drop_c_impl<L, mp_repeat_c<N, void>>::type;

template<class L, class N> using mp_drop = mp_drop_c<L, N::value>;

I’ll skip the recursive implementation and the performance comparison for this one. We can pretty much tell who’s going to win, and by how much.

mp_find_index

The final algorithm that I’ll bring to your attention is mp_find_index. mp_find_index<L, V> returns an integral constant of type size_t with a value that is the index of the first occurrence of V in L. If V is not in L, the return value is the size of L.

We’ll start with the recursive implementation, as usual:

template<class L, class V> struct mp_find_index_impl;

template<class L, class V> using mp_find_index = typename mp_find_index_impl<L, V>::type;

template<template<class...> class L, class V> struct mp_find_index_impl<L<>, V>
{
    using type = mp_size_t<0>;
};

template<template<class...> class L, class... T, class V>
    struct mp_find_index_impl<L<V, T...>, V>
{
    using type = mp_size_t<0>;
};

template<template<class...> class L, class T1, class... T, class V>
    struct mp_find_index_impl<L<T1, T...>, V>
{
    using type = mp_size_t<1 + mp_find_index<L<T...>, V>::value>;
};

and will continue with the compile times for N calls to mp_find_index on a list with N elements, as usual:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, recursive

3.5

DNF

clang++ 3.5.1, recursive

1.1

5.5

DNF

g++ 4.9.2, recursive

0.8

4.6

13.6

DNF

What can we do here?

Let’s go back to mp_contains and look at the "mp_count/cx_plus2" implementation which we rejected in favor of the inheritance-based one. It built a constexpr array of booleans and summed them in a constexpr function. We can do the same here, except instead of summing the array, we can find the index of the first true value:

template<class L, class V> struct mp_find_index_impl;

template<class L, class V> using mp_find_index = typename mp_find_index_impl<L, V>::type;

template<template<class...> class L, class V> struct mp_find_index_impl<L<>, V>
{
    using type = mp_size_t<0>;
};

constexpr std::size_t cx_find_index( bool const * first, bool const * last )
{
    return first == last || *first? 0: 1 + cx_find_index( first + 1, last );
}

template<template<class...> class L, class... T, class V>
    struct mp_find_index_impl<L<T...>, V>
{
    static constexpr bool _v[] = { std::is_same<T, V>::value... };

    using type = mp_size_t< cx_find_index( _v, _v + sizeof...(T) ) >;
};

The performance of this version is:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

clang++ 3.5.1, constexpr

0.5

1.3

2.9

DNF

g++ 4.9.2, constexpr

0.5

1.4

3.1

5.5

8.7

13.0

18.0

DNF

which, while not ideal, is significantly better than our recursive punching bag. But if our compiler of choice is VC++ 2013, we can’t use constexpr.

We may attempt an implementation along the same lines, but with the constexpr function replaced with ordinary metaprogramming:

template<class L, class V> struct mp_find_index_impl;

template<class L, class V> using mp_find_index = typename mp_find_index_impl<L, V>::type;

template<template<class...> class L, class V> struct mp_find_index_impl<L<>, V>
{
    using type = mp_size_t<0>;
};

template<bool...> struct find_index_impl_;

template<> struct find_index_impl_<>
{
    static const std::size_t value = 0;
};

template<bool B1, bool... R> struct find_index_impl_<B1, R...>
{
    static const std::size_t value = B1? 0: 1 + find_index_impl_<R...>::value;
};

template<bool B1, bool B2, bool B3, bool B4, bool B5,
    bool B6, bool B7, bool B8, bool B9, bool B10, bool... R>
    struct find_index_impl_<B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, R...>
{
    static const std::size_t value = B1? 0: B2? 1: B3? 2: B4? 3: B5? 4:
        B6? 5: B7? 6: B8? 7: B9? 8: B10? 9: 10 + find_index_impl_<R...>::value;
};

template<template<class...> class L, class... T, class V>
    struct mp_find_index_impl<L<T...>, V>
{
    using type = mp_size_t<find_index_impl_<std::is_same<T, V>::value...>::value>;
};

This is still recursive, so we don’t expect miracles, but it wouldn’t hurt to measure:

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800

VC++ 2013, bool…​

4.7

94.5

488.3

XFA

clang++ 3.5.1, bool…​

0.6

2.2

5.8

12.0

21.7

35.2

DNF

g++ 4.9.2, bool…​

0.6

2.4

6.5

13.2

23.8

39.1

59.0

DNF

(where XFA stands for "experimenter fell asleep".)

This is an interesting tradeoff for VC++ 2013 and Clang. On the one hand, this implementation is slower; on the other, it doesn’t crash the compiler as easily. Which to prefer is a matter of taste and of stern evaluation of one’s needs to manipulate type lists of length 300.

Note that once we have mp_drop and mp_find_index, we can derive the mp_find<L, V> algorithm, which returns the suffix of L starting with the first occurrence of V, if any, and an empty list otherwise, by using mp_drop<L, mp_find_index<L, V>>.

Conclusion

In this article, I have shown efficient algorithms that allow us to treat type lists as sets, maps and vectors, demonstrating various C++11 implementation techniques in the process.