Home | Libraries | People | FAQ | More |
#include <boost/math/interpolators/cubic_hermite.hpp>
namespace boost::math::interpolators { template <class RandomAccessContainer> class cubic_hermite { public: using Real = RandomAccessContainer::value_type; cubic_hermite(RandomAccessContainer&& abscissas, RandomAccessContainer&& ordinates, RandomAccessContainer&& derivatives); Real operator()(Real x) const; Real prime(Real x) const; void push_back(Real x, Real y, Real dydx); std::pair<Real, Real> domain() const; friend std::ostream& operator<<(std::ostream & os, const cubic_hermite & m); }; template<class RandomAccessContainer> class cardinal_cubic_hermite { public: using Real = typename RandomAccessContainer::value_type; cardinal_cubic_hermite(RandomAccessContainer && y, RandomAccessContainer && dydx, Real x0, Real dx) inline Real operator()(Real x) const; inline Real prime(Real x) const; std::pair<Real, Real> domain() const; }; template<class RandomAccessContainer> class cardinal_cubic_hermite_aos { public: using Point = typename RandomAccessContainer::value_type; using Real = typename Point::value_type; cardinal_cubic_hermite_aos(RandomAccessContainer && data, Real x0, Real dx); inline Real operator()(Real x) const; inline Real prime(Real x) const; std::pair<Real, Real> domain() const; }; } // namespaces
The cubic Hermite interpolant takes non-equispaced data and interpolates between them via cubic Hermite polynomials whose slopes must be provided. This is a very nice interpolant for solution skeletons of ODEs steppers, since numerically solving y' = f(x, y) produces a list of positions, values, and their derivatives, i.e. (x,y,y')=(x,y,f(x,y))-which is exactly what is required for the cubic Hermite interpolator. The interpolant is C1 and evaluation has 𝑶(log(N)) complexity. An example usage is as follows:
std::vector<double> x{1, 5, 9 , 12}; std::vector<double> y{8,17, 4, -3}; std::vector<double dydx{5, -2, -1}; using boost::math::interpolators::cubic_hermite; auto spline = cubic_hermite(std::move(x), std::move(y), std::move(dydx)); // evaluate at a point: double z = spline(3.4); // evaluate derivative at a point: double zprime = spline.prime(3.4);
Sanity checking of the interpolator can be achieved via:
std::cout << spline << "\n";
Note that the interpolator is pimpl'd, so that copying the class is cheap,
and hence it can be shared between threads. (The call operator and .prime()
are threadsafe; push_back
is
not.)
This interpolant can be updated in constant time. Hence we can use boost::circular_buffer
to do real-time interpolation:
#include <boost/circular_buffer.hpp> ... boost::circular_buffer<double> initial_x{1,2,3,4}; boost::circular_buffer<double> initial_y{4,5,6,7}; boost::circular_buffer<double> initial_dydx{1,1,1,1}; auto circular_hermite = cubic_hermite(std::move(initial_x), std::move(initial_y), std::move(initial_dydx)); // interpolate via call operation: double y = circular_hermite(3.5); // add new data: circular_hermite.push_back(5, 8); // interpolate at 4.5: y = circular_hermite(4.5);
For the equispaced case, we can either use cardinal_cubic_hermite
,
which accepts two separate arrays of y
and dydx
, or we can use cardinal_cubic_hermite_aos
, which takes a
vector of (y, dydx)
,
i.e., and array of structs (aos
).
The array of structs should be preferred as it uses cache more effectively.
Usage is as follows:
using boost::math::interpolators::cardinal_cubic_hermite; double x0 = 0; double dx = 1; std::vector<double> y(128, 1); std::vector<double> dydx(128, 0); auto ch = cardinal_cubic_hermite(std::move(y), std::move(dydx), x0, dx);
For the "array of structs" version:
using boost::math::interpolators::cardinal_cubic_hermite_aos; std::vector<std::array<double, 2>> data(128); for (auto & datum : data) { datum[0] = 1; // y datum[1] = 0; // y' } auto ch = cardinal_cubic_hermite_aos(std::move(data), x0, dx);
For a quick sanity check, we can call ch.domain()
:
auto [x_min, x_max] = ch.domain();
Google benchmark was used to evaluate the performance.
Run on (16 X 4300 MHz CPU s) CPU Caches: L1 Data 32 KiB (x8) L1 Instruction 32 KiB (x8) L2 Unified 1024 KiB (x8) L3 Unified 11264 KiB (x1) Load Average: 1.16, 1.11, 0.99 ----------------------------------------------------- Benchmark Time ----------------------------------------------------- CubicHermite<double>/256 9.67 ns CubicHermite<double>/512 10.4 ns CubicHermite<double>/1024 10.9 ns CubicHermite<double>/2048 12.3 ns CubicHermite<double>/4096 13.4 ns CubicHermite<double>/8192 14.9 ns CubicHermite<double>/16384 15.5 ns CubicHermite<double>/32768 18.0 ns CubicHermite<double>/65536 19.9 ns CubicHermite<double>/131072 23.0 ns CubicHermite<double>/262144 25.3 ns CubicHermite<double>/524288 28.9 ns CubicHermite<double>/1048576 31.0 ns CubicHermite<double>_BigO 1.32 lgN CubicHermite<double>_RMS 13 % CardinalCubicHermite<double>/256 3.14 ns CardinalCubicHermite<double>/512 3.13 ns CardinalCubicHermite<double>/1024 3.19 ns CardinalCubicHermite<double>/2048 3.14 ns CardinalCubicHermite<double>/4096 3.38 ns CardinalCubicHermite<double>/8192 3.54 ns CardinalCubicHermite<double>/16384 3.51 ns CardinalCubicHermite<double>/32768 3.76 ns CardinalCubicHermite<double>/65536 5.82 ns CardinalCubicHermite<double>/131072 5.76 ns CardinalCubicHermite<double>/262144 5.85 ns CardinalCubicHermite<double>/524288 5.69 ns CardinalCubicHermite<double>/1048576 5.77 ns CardinalCubicHermite<double>_BigO 4.28 (1) CardinalCubicHermite<double>_RMS 28 % CardinalCubicHermiteAOS<double>/256 3.22 ns CardinalCubicHermiteAOS<double>/512 3.22 ns CardinalCubicHermiteAOS<double>/1024 3.26 ns CardinalCubicHermiteAOS<double>/2048 3.23 ns CardinalCubicHermiteAOS<double>/4096 3.49 ns CardinalCubicHermiteAOS<double>/8192 3.57 ns CardinalCubicHermiteAOS<double>/16384 3.73 ns CardinalCubicHermiteAOS<double>/32768 4.12 ns CardinalCubicHermiteAOS<double>/65536 4.13 ns CardinalCubicHermiteAOS<double>/131072 4.12 ns CardinalCubicHermiteAOS<double>/262144 4.12 ns CardinalCubicHermiteAOS<double>/524288 4.12 ns CardinalCubicHermiteAOS<double>/1048576 4.19 ns CardinalCubicHermiteAOS<double>_BigO 3.73 (1) CardinalCubicHermiteAOS<double>_RMS 11 %
The logarithmic complexity of the non-equispaced version is evident, as is the better cache utilization of the "array of structs" version as the problem size gets larger.