Boost C++ Libraries Home Libraries People FAQ More

PrevUpHomeNext

Univariate Statistics

Synopsis

#include <boost/math/statistics/univariate_statistics.hpp>

namespace boost{ namespace math{ namespace statistics {

    template<class Container>
    auto mean(Container const & c);

    template<class ForwardIterator>
    auto mean(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto variance(Container const & c);

    template<class ForwardIterator>
    auto variance(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto sample_variance(Container const & c);

    template<class ForwardIterator>
    auto sample_variance(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto mean_and_sample_variance(Container const & c);

    template<class Container>
    auto skewness(Container const & c);

    template<class ForwardIterator>
    auto skewness(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto kurtosis(Container const & c);

    template<class ForwardIterator>
    auto kurtosis(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto excess_kurtosis(Container const & c);

    template<class ForwardIterator>
    auto excess_kurtosis(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto first_four_moments(Container const & c);

    template<class ForwardIterator>
    auto first_four_moments(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto median(Container & c);

    template<class ForwardIterator>
    auto median(ForwardIterator first, ForwardIterator last);

    template<class RandomAccessIterator>
    auto median_absolute_deviation(ForwardIterator first, ForwardIterator last, typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<Real>::quiet_NaN());

    template<class RandomAccessContainer>
    auto median_absolute_deviation(RandomAccessContainer v, typename RandomAccessContainer::value_type center=std::numeric_limits<Real>::quiet_NaN());

    template<class RandomAccessIterator>
    auto interquartile_range(ForwardIterator first, ForwardIterator last);

    template<class RandomAccessContainer>
    auto interquartile_range(RandomAccessContainer v);

    template<class Container>
    auto gini_coefficient(Container & c);

    template<class ForwardIterator>
    auto gini_coefficient(ForwardIterator first, ForwardIterator last);

    template<class Container>
    auto sample_gini_coefficient(Container & c);

    template<class ForwardIterator>
    auto sample_gini_coefficient(ForwardIterator first, ForwardIterator last);

}}}

Description

The file boost/math/statistics/univariate_statistics.hpp is a set of facilities for computing scalar values from vectors.

Many of these functionals have trivial naive implementations, but experienced programmers will recognize that even trivial algorithms are easy to screw up, and that numerical instabilities often lurk in corner cases. We have attempted to do our "due diligence" to root out these problems-scouring the literature for numerically stable algorithms for even the simplest of functionals.

Nota bene: Some similar functionality is provided in Boost Accumulators Framework. These accumulators should be used in real-time applications; univariate_statistics.hpp should be used when CPU vectorization is needed. As a reminder, remember that to actually get vectorization, compile with -march=native -O3 flags.

We now describe each functional in detail. Our examples use std::vector<double> to hold the data, but this not required. In general, you can store your data in an Eigen array, and Armadillo vector, std::array, and for many of the routines, a std::forward_list. These routines are usable in float, double, long double, and Boost.Multiprecision precision, as well as their complex extensions whenever the computation is well-defined. For certain operations (total variation, for example) integer inputs are supported.

Mean

std::vector<double> v{1,2,3,4,5};
double mu = boost::math::statistics::mean(v.cbegin(), v.cend());
// Alternative syntax if you want to use entire container:
mu = boost::math::statistics::mean(v);

The implementation follows Higham 1.6a. The data is not modified and must be forward iterable. Works with real and integer data. If the input is an integer type, the output is a double precision float.

Variance

std::vector<double> v{1,2,3,4,5};
Real sigma_sq = boost::math::statistics::variance(v.cbegin(), v.cend());

If you don't need to calculate on a subset of the input, then the range call is more terse:

std::vector<double> v{1,2,3,4,5};
Real sigma_sq = boost::math::statistics::variance(v);

The implementation follows Higham 1.6b. The input data must be forward iterable and the range [first, last) must contain at least two elements. It is not in general sensible to pass complex numbers to this routine. If integers are passed as input, then the output is a double precision float.

boost::math::statistics::variance returns the population variance. If you want a sample variance, use

std::vector<double> v{1,2,3,4,5};
Real sn_sq = boost::math::statistics::sample_variance(v);

Skewness

Computes the skewness of a dataset:

std::vector<double> v{1,2,3,4,5};
double skewness = boost::math::statistics::skewness(v);
// skewness = 0.

The input vector is not modified, works with integral and real data. If the input data is integral, the output is a double precision float.

For a dataset consisting of a single constant value, we take the skewness to be zero by definition.

The implementation follows Pebay.

Kurtosis

Computes the kurtosis of a dataset:

std::vector<double> v{1,2,3,4,5};
double kurtosis = boost::math::statistics::kurtosis(v);
// kurtosis = 17/10

The implementation follows Pebay. The input data must be forward iterable and must consist of real or integral values. If the input data is integral, the output is a double precision float. Note that this is not the excess kurtosis. If you require the excess kurtosis, use boost::math::statistics::excess_kurtosis. This function simply subtracts 3 from the kurtosis, but it makes eminently clear our definition of kurtosis.

First four moments

Simultaneously computes the first four central moments in a single pass through the data:

std::vector<double> v{1,2,3,4,5};
auto [M1, M2, M3, M4] = boost::math::statistics::first_four_moments(v);

Median

Computes the median of a dataset:

std::vector<double> v{1,2,3,4,5};
double m = boost::math::statistics::median(v.begin(), v.end());

Nota bene: The input vector is modified. The calculation of the median is a thin wrapper around the C++11 nth_element. Therefore, all requirements of std::nth_element are inherited by the median calculation. In particular, the container must allow random access.

Median Absolute Deviation

Computes the median absolute deviation of a dataset:

std::vector<double> v{1,2,3,4,5};
double mad = boost::math::statistics::median_absolute_deviation(v);

By default, the deviation from the median is used. If you have some prior that the median is zero, or wish to compute the median absolute deviation from the mean, use the following:

// prior is that center is zero:
double center = 0;
double mad = boost::math::statistics::median_absolute_deviation(v, center);

// compute median absolute deviation from the mean:
double mu = boost::math::statistics::mean(v);
double mad = boost::math::statistics::median_absolute_deviation(v, mu);

Nota bene: The input vector is modified. Again the vector is passed into a call to nth_element.

Interquartile Range

Computes the interquartile range of a dataset:

std::vector<double> v{1,2,3,4,5};
double iqr = boost::math::statistics::interquartile_range(v);
// Q1 = 1.5, Q3 = 4.5 => iqr = 3

For a vector of length 2n+1 or 2n, the first quartile Q1 is the median of the n smallest values, and the third quartile Q3 is the median of the n largest values. The interquartile range is then Q3 - Q1. The function interquartile_range, like the median, calls into std::nth_element, and hence partially sorts the data.

Gini Coefficient

Compute the Gini coefficient of a dataset:

std::vector<double> v{1,0,0,0};
double gini = boost::math::statistics::gini_coefficient(v);
// gini = 3/4
double s_gini = boost::math::statistics::sample_gini_coefficient(v);
// s_gini = 1.
std::vector<double> w{1,1,1,1};
gini = boost::math::statistics::gini_coefficient(w.begin(), w.end());
// gini = 0, as all elements are now equal.

Nota bene: The input data is altered: in particular, it is sorted. Makes a call to std::sort, and as such requires random access iterators.

The sample Gini coefficient lies in the range [0,1], whereas the population Gini coefficient is in the range [0, 1 - 1/ n].

Nota bene: There is essentially no reason to pass negative values to the Gini coefficient function. However, a use case (measuring wealth inequality when some people have negative wealth) exists, so we do not throw an exception when negative values are encountered. You should have very good cause to pass negative values to the Gini coefficient calculator. Another use case is found in signal processing, but the sorting is by magnitude and hence has a different implementation. See absolute_gini_coefficient for details.

References


PrevUpHomeNext