8#ifndef CRYPTOPP_GFPCRYPT_H
9#define CRYPTOPP_GFPCRYPT_H
13#if CRYPTOPP_MSC_VERSION
15# pragma warning(disable: 4189 4231 4275)
29NAMESPACE_BEGIN(CryptoPP)
59 {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
66 {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
91 bool GetVoidValue(
const char *name,
const std::type_info &valueType,
void *pValue)
const;
116 void EncodeElement(
bool reversible,
const Element &element,
byte *encoded)
const;
124 unsigned int GetEncodedElementSize(
bool reversible)
const;
133 Integer DecodeElement(
const byte *encoded,
bool checkForGroupMembership)
const;
144 Integer GetMaxExponent()
const;
148 OID GetAlgorithmID()
const;
162 {m_q = q; ParametersChanged();}
164 static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {
return "";}
168 {
return modulus-(GetFieldType() == 1 ? 1 : -1);}
171 virtual int GetFieldType()
const =0;
172 virtual unsigned int GetDefaultSubgroupOrderSize(
unsigned int modulusSize)
const;
181template <
class GROUP_PRECOMP,
class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<
typename GROUP_PRECOMP::Element> >
187 typedef typename GROUP_PRECOMP::Element Element;
192 bool GetVoidValue(
const char *name,
const std::type_info &valueType,
void *pValue)
const
193 {
return GetValueHelper<DL_GroupParameters_IntegerBased>(
this, name, valueType, pValue).Assignable();}
196 {AssignFromHelper<DL_GroupParameters_IntegerBased>(
this, source);}
211 void SetModulusAndSubgroupGenerator(
const Integer &p,
const Integer &g)
212 {this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->
GetGroupPrecomputation(), g); this->ParametersChanged();}
218 {
return !operator==(rhs);}
248 void SimultaneousExponentiate(Element *results,
const Element &base,
const Integer *exponents,
unsigned int exponentsCount)
const;
260 bool GetVoidValue(
const char *name,
const std::type_info &valueType,
void *pValue)
const
262 return GetValueHelper<DL_GroupParameters_IntegerBased>(
this, name, valueType, pValue).Assignable();
266 Element MultiplyElements(
const Element &a,
const Element &b)
const;
267 Element CascadeExponentiate(
const Element &element1,
const Integer &exponent1,
const Element &element2,
const Integer &exponent2)
const;
270 int GetFieldType()
const {
return 1;}
282 unsigned int GetDefaultSubgroupOrderSize(
unsigned int modulusSize)
const {
return modulusSize-1;}
300 return GetSubgroupOrder()-1;
311 CRYPTOPP_STATIC_CONSTEXPR
const char* CRYPTOPP_API StaticAlgorithmName() {
return "DSA-1363";}
320 s = (kInv * (x*r + e)) % q;
321 CRYPTOPP_ASSERT(!!r && !!s);
327 if (r>=q || r<1 || s>=q || s<1)
345template <
class T,
class H>
349 CRYPTOPP_STATIC_CONSTEXPR
const char* CRYPTOPP_API StaticAlgorithmName() {
return "DSA-RFC6979";}
353 bool IsProbabilistic()
const
361 static const byte zero = 0, one = 1;
367 e.Encode(BH, BH.
size());
368 BH = bits2octets(BH, q);
372 x.Encode(BX, BX.
size());
376 std::fill(V.
begin(), V.
begin()+H::DIGESTSIZE, one);
380 std::fill(K.
begin(), K.
begin()+H::DIGESTSIZE, zero);
383 m_hmac.SetKey(K, K.
size());
384 m_hmac.Update(V, V.
size());
385 m_hmac.Update(&zero, 1);
386 m_hmac.Update(BX, BX.
size());
387 m_hmac.Update(BH, BH.
size());
388 m_hmac.TruncatedFinal(K, K.
size());
391 m_hmac.SetKey(K, K.
size());
392 m_hmac.Update(V, V.
size());
393 m_hmac.TruncatedFinal(V, V.
size());
396 m_hmac.SetKey(K, K.
size());
397 m_hmac.Update(V, V.
size());
398 m_hmac.Update(&one, 1);
399 m_hmac.Update(BX, BX.
size());
400 m_hmac.Update(BH, BH.
size());
401 m_hmac.TruncatedFinal(K, K.
size());
404 m_hmac.SetKey(K, K.
size());
405 m_hmac.Update(V, V.
size());
406 m_hmac.TruncatedFinal(V, V.
size());
417 m_hmac.Update(V, V.
size());
418 m_hmac.TruncatedFinal(V, V.
size());
425 k = bits2int(temp, qlen);
430 m_hmac.Update(V, V.
size());
431 m_hmac.Update(&zero, 1);
432 m_hmac.TruncatedFinal(K, K.
size());
434 m_hmac.SetKey(K, K.
size());
435 m_hmac.Update(V, V.
size());
436 m_hmac.TruncatedFinal(V, V.
size());
447 size_t blen = bits.
size()*8;
462 if (block.size() == rlen)
467 if (block.size() > rlen)
469 size_t offset = block.size() - rlen;
470 std::memcpy(t, block + offset, rlen);
474 size_t offset = rlen - block.size();
475 memset(t,
'\x00', offset);
476 std::memcpy(t + offset, block, rlen - offset);
488 return int2octets(b1.
IsNegative() ? b2 : b1, q.ByteCount());
508 CRYPTOPP_STATIC_CONSTEXPR
const char* CRYPTOPP_API StaticAlgorithmName() {
return "GDSA-ISO15946";}
518 s = (k * r - e) * x % q;
519 CRYPTOPP_ASSERT(!!r && !!s);
525 if (r>=q || r<1 || s>=q || s<1)
529 const Integer u1 = (rInv * e) % q;
530 const Integer u2 = (rInv * s) % q;
550 CRYPTOPP_STATIC_CONSTEXPR
const char* CRYPTOPP_API StaticAlgorithmName() {
return "NR";}
559 CRYPTOPP_ASSERT(!!r);
565 if (r>=q || r<1 || s>=q)
586 {this->AccessGroupParameters().Initialize(params); this->
SetPublicElement(y);}
593 {this->AccessGroupParameters().Initialize(p, g); this->
SetPublicElement(y);}
601 {this->AccessGroupParameters().Initialize(p, q, g); this->
SetPublicElement(y);}
709 DL_SignatureKeys_GFP,
710 DL_Algorithm_GDSA<Integer>,
711 DL_SignatureMessageEncodingMethod_DSA,
721 DL_SignatureKeys_GFP,
722 DL_Algorithm_NR<Integer>,
723 DL_SignatureMessageEncodingMethod_NR,
775 {
return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
780 MIN_PRIME_LENGTH = 1024,
782 MAX_PRIME_LENGTH = 3072,
784 PRIME_LENGTH_MULTIPLE = 1024
826 DL_Algorithm_GDSA<Integer>,
827 DL_SignatureMessageEncodingMethod_DSA,
832 static std::string CRYPTOPP_API StaticAlgorithmName() {
return "DSA/" + (std::string)H::StaticAlgorithmName();}
841 DL_SignatureKeys_GFP,
842 DL_Algorithm_DSA_RFC6979<Integer, H>,
843 DL_SignatureMessageEncodingMethod_DSA,
847 static std::string CRYPTOPP_API StaticAlgorithmName() {
return std::string(
"DSA-RFC6979/") + H::StaticAlgorithmName();}
870template <
class MAC,
bool DHAES_MODE,
bool LABEL_OCTETS=false>
876 bool ParameterSupported(
const char *name)
const {
return strcmp(name, Name::EncodingParameters()) == 0;}
877 size_t GetSymmetricKeyLength(
size_t plaintextLength)
const
878 {
return plaintextLength +
static_cast<size_t>(MAC::DEFAULT_KEYLENGTH);}
879 size_t GetSymmetricCiphertextLength(
size_t plaintextLength)
const
880 {
return plaintextLength +
static_cast<size_t>(MAC::DIGESTSIZE);}
881 size_t GetMaxSymmetricPlaintextLength(
size_t ciphertextLength)
const
883 void SymmetricEncrypt(
RandomNumberGenerator &rng,
const byte *key,
const byte *plaintext,
size_t plaintextLength,
byte *ciphertext,
const NameValuePairs ¶meters)
const
885 CRYPTOPP_UNUSED(rng);
886 const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
890 cipherKey = key + MAC::DEFAULT_KEYLENGTH;
895 macKey = key + plaintextLength;
899 parameters.
GetValue(Name::EncodingParameters(), encodingParameters);
902 xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
905 mac.Update(ciphertext, plaintextLength);
906 mac.Update(encodingParameters.
begin(), encodingParameters.
size());
913 mac.Final(ciphertext + plaintextLength);
915 DecodingResult SymmetricDecrypt(
const byte *key,
const byte *ciphertext,
size_t ciphertextLength,
byte *plaintext,
const NameValuePairs ¶meters)
const
917 size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
918 const byte *cipherKey, *macKey;
922 cipherKey = key + MAC::DEFAULT_KEYLENGTH;
927 macKey = key + plaintextLength;
931 parameters.
GetValue(Name::EncodingParameters(), encodingParameters);
934 mac.Update(ciphertext, plaintextLength);
935 mac.Update(encodingParameters.
begin(), encodingParameters.
size());
942 if (!mac.Verify(ciphertext + plaintextLength))
946 xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
957template <
class T,
bool DHAES_MODE,
class KDF>
963 bool ParameterSupported(
const char *name)
const {
return strcmp(name, Name::KeyDerivationParameters()) == 0;}
964 void Derive(
const DL_GroupParameters<T> ¶ms,
byte *derivedKey,
size_t derivedLength,
const T &agreedElement,
const T &ephemeralPublicKey,
const NameValuePairs ¶meters)
const
970 params.
EncodeElement(
true, ephemeralPublicKey, agreedSecret);
980 parameters.
GetValue(Name::KeyDerivationParameters(), derivationParameters);
981 KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.
size(), derivationParameters.
begin(), derivationParameters.
size());
1018template <
class HASH = SHA1,
class COFACTOR_OPTION = NoCofactorMultiplication,
bool DHAES_MODE = true,
bool LABEL_OCTETS=false>
1022 DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
1023 DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
1024 DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
1027 static std::string CRYPTOPP_API StaticAlgorithmName() {
return "DLIES";}
1032#if CRYPTOPP_MSC_VERSION
1033# pragma warning(pop)
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Classes and functions for working with ANS.1 objects.
Encode and decode ASN.1 objects with additional information.
virtual void DEREncode(BufferedTransformation &bt) const =0
Encode this object into a BufferedTransformation.
virtual void BERDecode(BufferedTransformation &bt)=0
Decode this object from a BufferedTransformation.
Used to pass byte array input as part of a NameValuePairs object.
const byte * begin() const
Pointer to the first byte in the memory block.
size_t size() const
Length of the memory block.
DSA signature algorithm based on RFC 6979.
Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
Generate k.
bool IsDeterministic() const
Signature scheme flag.
German Digital Signature Algorithm.
void Sign(const DL_GroupParameters< T > ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
bool Verify(const DL_GroupParameters< T > ¶ms, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
bool Verify(const DL_GroupParameters< T > ¶ms, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
void Sign(const DL_GroupParameters< T > ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
bool Verify(const DL_GroupParameters< T > ¶ms, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
void Sign(const DL_GroupParameters< T > ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
Discrete Log (DL) encryption scheme.
Interface for Elgamal-like signature algorithms.
P1363 based XOR Encryption Method.
DL_FixedBasePrecomputation interface.
static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
Check the prime length for errors.
Integer GetMaxExponent() const
Retrieves the maximum exponent for the group.
GF(p) group parameters that default to safe primes.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
bool IsIdentity(const Integer &element) const
Determines if an element is an identity.
Integer-based GroupParameters specialization.
void Initialize(const Integer &p, const Integer &g)
Initialize a group parameters over integers.
Integer GetGroupOrder() const
Retrieves the order of the group.
virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g)=0
Set group parameters.
void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
Create a group parameters over integers.
void SetSubgroupOrder(const Integer &q)
Set subgroup order.
Integer ConvertElementToInteger(const Element &element) const
Converts an element to an Integer.
virtual const Integer & GetModulus() const =0
Retrieve the modulus for the group.
void Initialize(const DL_GroupParameters_IntegerBased ¶ms)
Initialize a group parameters over integers.
bool FastSubgroupCheckAvailable() const
Determine if subgroup membership check is fast.
void Initialize(const Integer &p, const Integer &q, const Integer &g)
Initialize a group parameters over integers.
const Integer & GetSubgroupOrder() const
Retrieves the subgroup order.
Integer-based GroupParameters default implementation.
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
const DL_FixedBasePrecomputation< Element > & GetBasePrecomputation() const
Retrieves the group precomputation.
DL_FixedBasePrecomputation< Element > & AccessBasePrecomputation()
Retrieves the group precomputation.
const Integer & GetGenerator() const
Retrieves a reference to the group generator.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
const Integer & GetModulus() const
Retrieve the modulus for the group.
Interface for Discrete Log (DL) group parameters.
virtual const Element & GetSubgroupGenerator() const
Retrieves the subgroup generator.
virtual void EncodeElement(bool reversible, const Element &element, byte *encoded) const =0
Encodes the element.
virtual unsigned int GetEncodedElementSize(bool reversible) const =0
Retrieves the encoded element's size.
virtual const Integer & GetSubgroupOrder() const =0
Retrieves the subgroup order.
virtual Element ExponentiateBase(const Integer &exponent) const
Exponentiates the base.
virtual Integer ConvertElementToInteger(const Element &element) const =0
Converts an element to an Integer.
Base implementation of Discrete Log (DL) group parameters.
const DL_GroupPrecomputation< Element > & GetGroupPrecomputation() const
Retrieves the group precomputation.
P1363 based Key Derivation Method.
Interface for key derivation algorithms used in DL cryptosystems.
Discrete Log (DL) private key in GF(p) groups.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
Create a private key.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
Create a private key.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
Create a private key.
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
Initialize a private key over GF(p)
void Initialize(const Integer &p, const Integer &g, const Integer &x)
Initialize a private key over GF(p)
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x)
Initialize a private key over GF(p)
Discrete Log (DL) private key base implementation.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms)
Generate a random key or crypto parameters.
void SetPrivateExponent(const Integer &x)
Sets the private exponent.
Discrete Log (DL) public key in GF(p) groups.
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y)
Initialize a public key over GF(p)
void Initialize(const Integer &p, const Integer &g, const Integer &y)
Initialize a public key over GF(p)
void DEREncodePublicKey(BufferedTransformation &bt) const
Encode subjectPublicKey part of subjectPublicKeyInfo.
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
Decode subjectPublicKey part of subjectPublicKeyInfo.
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
Initialize a public key over GF(p)
Interface for Discrete Log (DL) public keys.
virtual const Element & GetPublicElement() const
Retrieves the public element.
virtual void SetPublicElement(const Element &y)
Sets the public element.
virtual Element CascadeExponentiateBaseAndPublicElement(const Integer &baseExp, const Integer &publicExp) const
Exponentiates an element.
Discrete Log (DL) public key base implementation.
Discrete Log (DL) signature scheme.
Interface for symmetric encryption algorithms used in DL cryptosystems.
Interface for deterministic signers.
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
Generate a random key or crypto parameters.
Multiple precision integer with arithmetic operations.
size_t MinEncodedSize(Signedness sign=UNSIGNED) const
Minimum number of bytes to encode this integer.
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
static const Integer &CRYPTOPP_API One()
Integer representing 1.
bool IsNegative() const
Determines if the Integer is negative.
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const
Encode in big-endian format.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
Interface for retrieving values given their names.
bool GetValue(const char *name, T &value) const
Get a named value.
Interface for random number generators.
iterator begin()
Provides an iterator pointing to the first element in the memory block.
void New(size_type newSize)
Change size without preserving contents.
size_type size() const
Provides the count of elements in the SecBlock.
Library configuration file.
Abstract base classes that provide a uniform interface to this library.
@ BIG_ENDIAN_ORDER
byte order is big-endian
DSA2< SHA1 > DSA
DSA with SHA-1, typedef'd for backwards compatibility.
Classes for HMAC message authentication codes.
Multiple precision integer with arithmetic operations.
Utility functions for the Crypto++ library.
void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock=NULLPTR)
Access a block of memory.
T1 SaturatingSubtract(const T1 &a, const T2 &b)
Performs a saturating subtract clamped at 0.
const T & STDMAX(const T &a, const T &b)
Replacement function for std::max.
void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
Bounds checking replacement for memcpy()
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
size_t BitsToBytes(size_t bitCount)
Returns the number of 8-bit bytes or octets required for the specified number of bits.
This file contains helper classes/functions for implementing public key algorithms.
Classes for SHA-1 and SHA-2 family of message digests.
Classes for automatic resource management.
Discrete Log (DL) encryption/decryption keys in GF(p) groups.
Discrete Log (DL) signing/verification keys in GF(p) groups.
Discrete Log Integrated Encryption Scheme.
DSA deterministic signature scheme.
Returns a decoding results.
Converts an enumeration to a type suitable for use as a template parameter.